Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Environ Sci Pollut Res Int ; 22(1): 5-34, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25233913

ABSTRACT

Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time-depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.


Subject(s)
Agriculture/trends , Environmental Pollutants/toxicity , Imidazoles/toxicity , Insecticides/toxicity , Nitro Compounds/toxicity , Pyrazoles/toxicity , Agriculture/methods , Animals , Crops, Agricultural/metabolism , Environmental Pollutants/metabolism , Herbivory , Imidazoles/metabolism , Insecta/drug effects , Insecticides/metabolism , Neonicotinoids , Nitro Compounds/metabolism , Pyrazoles/metabolism , Seeds/metabolism
3.
Environ Sci Pollut Res Int ; 22(1): 35-67, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25096486

ABSTRACT

Systemic insecticides are applied to plants using a wide variety of methods, ranging from foliar sprays to seed treatments and soil drenches. Neonicotinoids and fipronil are among the most widely used pesticides in the world. Their popularity is largely due to their high toxicity to invertebrates, the ease and flexibility with which they can be applied, their long persistence, and their systemic nature, which ensures that they spread to all parts of the target crop. However, these properties also increase the probability of environmental contamination and exposure of nontarget organisms. Environmental contamination occurs via a number of routes including dust generated during drilling of dressed seeds, contamination and accumulation in arable soils and soil water, runoff into waterways, and uptake of pesticides by nontarget plants via their roots or dust deposition on leaves. Persistence in soils, waterways, and nontarget plants is variable but can be prolonged; for example, the half-lives of neonicotinoids in soils can exceed 1,000 days, so they can accumulate when used repeatedly. Similarly, they can persist in woody plants for periods exceeding 1 year. Breakdown results in toxic metabolites, though concentrations of these in the environment are rarely measured. Overall, there is strong evidence that soils, waterways, and plants in agricultural environments and neighboring areas are contaminated with variable levels of neonicotinoids or fipronil mixtures and their metabolites (soil, parts per billion (ppb)-parts per million (ppm) range; water, parts per trillion (ppt)-ppb range; and plants, ppb-ppm range). This provides multiple routes for chronic (and acute in some cases) exposure of nontarget animals. For example, pollinators are exposed through direct contact with dust during drilling; consumption of pollen, nectar, or guttation drops from seed-treated crops, water, and consumption of contaminated pollen and nectar from wild flowers and trees growing near-treated crops. Studies of food stores in honeybee colonies from across the globe demonstrate that colonies are routinely and chronically exposed to neonicotinoids, fipronil, and their metabolites (generally in the 1-100 ppb range), mixed with other pesticides some of which are known to act synergistically with neonicotinoids. Other nontarget organisms, particularly those inhabiting soils, aquatic habitats, or herbivorous insects feeding on noncrop plants in farmland, will also inevitably receive exposure, although data are generally lacking for these groups. We summarize the current state of knowledge regarding the environmental fate of these compounds by outlining what is known about the chemical properties of these compounds, and placing these properties in the context of modern agricultural practices.


Subject(s)
Insecticides/chemistry , Nicotinic Agonists/chemistry , Pyrazoles/chemistry , Soil Pollutants/chemistry , Water Pollutants, Chemical/chemistry , Agriculture , Animals , Insecta/drug effects , Insecticides/metabolism , Insecticides/toxicity , Nicotinic Agonists/metabolism , Nicotinic Agonists/toxicity , Plants/metabolism , Pyrazoles/metabolism , Pyrazoles/toxicity , Soil/chemistry , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
4.
J Econ Entomol ; 102(5): 1808-15, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19886445

ABSTRACT

The death of honey bees, Apis mellifera L., and the consequent colony collapse disorder causes major losses in agriculture and plant pollination worldwide. The phenomenon showed increasing rates in the past years, although its causes are still awaiting a clear answer. Although neonicotinoid systemic insecticides used for seed coating of agricultural crops were suspected as possible reason, studies so far have not shown the existence of unquestionable sources capable of delivering directly intoxicating doses in the fields. Guttation is a natural plant phenomenon causing the excretion of xylem fluid at leaf margins. Here, we show that leaf guttation drops of all the corn plants germinated from neonicotinoid-coated seeds contained amounts of insecticide constantly higher than 10 mg/l, with maxima up to 100 mg/l for thiamethoxam and clothianidin, and up to 200 mg/l for imidacloprid. The concentration of neonicotinoids in guttation drops can be near those of active ingredients commonly applied in field sprays for pest control, or even higher. When bees consume guttation drops, collected from plants grown from neonicotinoid-coated seeds, they encounter death within few minutes.


Subject(s)
Bees/drug effects , Insecticides/toxicity , Abdomen/physiology , Animals , Bees/physiology , Colony Collapse , Imidazoles/toxicity , Neonicotinoids , Nitro Compounds/toxicity , Plant Extracts/pharmacology , Plant Leaves/physiology , Pollination/physiology , Seedlings/physiology , Seeds/physiology , Wings, Animal/drug effects , Wings, Animal/physiology , Zea mays/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...