Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; : e202401658, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890146

ABSTRACT

A new nickel catalyzed cross-electrophile coupling for accessing γ-lactams (isoindolinones) as well as γ-lactones (isobenzofuranones) via carbonylation with CO2 is documented. The protocol exploits the synergistic role of redox-active Ni(II) complexes and AlCl3 as a CO2 activator/oxygen scavenger, leading to the formation of a wide range of cyclic amides and esters (28 examples) in good to high yields (up to 87 %). A dedicated computational investigation revealed the multiple roles played by AlCl3. In particular, the simultaneous transient protection of the pendant amino group of the starting reagents and the formation of the electrophilically activated CO2-AlCl3 adduct are shown to concur in paving the way for an energetically favorable mechanistic pathway.

2.
Org Lett ; 25(38): 6969-6974, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37669466

ABSTRACT

A carbonylation-carboxylation synthetic sequence, via double CO2 fixation, is described. The productive merger of a Ni-catalyzed cross-electrophile coupling manifold, with the use of AlCl3, triggered a cascade reaction with the formation of three consecutive C-C bonds in a single operation. This strategy traces an unprecedented synthetic route to ketones under Lewis acid assisted carbon dioxide valorization. Computational insights revealed a unique double function of AlCl3, and labeling (13CO2) experiments validate the genuine incorporation of CO2 in both functional groups.

3.
Chem Commun (Camb) ; 59(18): 2664-2667, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36785969

ABSTRACT

The chemo- and stereoselective electrochemical allylation/alkylation of ethers is presented via a C(sp3)-H activation event. The electrosynthetic protocol enables the realization of a large library of functionalized ethers (35 examples) in high yields (up to 84%) via cathodic activation of a new type of redox-active carbonate (RAC), capable of triggering HAT (Hydrogen-Atom-Transfer) events through the generation of electrophilic oxy radicals. The process displayed high functional group tolerance and mild reaction conditions. A mechanistic elucidation via voltammetric analysis completes the study.

4.
Angew Chem Int Ed Engl ; 61(47): e202211732, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36161744

ABSTRACT

A nickel-catalyzed reductive cross-electrophile coupling between the redox-active N-trifluoroethoxyphthalimide and iodoarenes is documented. The protocol reproduces a formal arylation of trifluoroacetaldehyde under mild conditions in high yields (up to 88 %) and with large functional group tolerance (30 examples). A combined computational and experimental investigation revealed a pivotal solvent assisted 1,2-Hydrogen Atom Transfer (HAT) process to generate a nucleophilic α-hydroxy-α-trifluoromethyl C-centered radical for the Csp2 -Csp3 bond forming process.


Subject(s)
Alcohols , Nickel , Nickel/chemistry , Catalysis , Oxidation-Reduction
5.
Chemistry ; 27(28): 7657-7662, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33829576

ABSTRACT

A novel asymmetric nickel-based procedure has been developed in which CO2 fixation is achieved as a second step of a truncated Heck coupling. For this, a new chiral ligand has been prepared and shown to achieve enantiomeric excesses up to 99 %. The overall process efficiently furnishes chiral 2,3-dihydrobenzofuran-3-ylacetic acids, an important class of bioactive products, from easy to prepare starting materials. A combined experimental and computational effort revealed the key steps of the catalytic cycle and suggested the unexpected participation of Ni(I) species in the coupling event.

SELECTION OF CITATIONS
SEARCH DETAIL