Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Radiother Oncol ; 195: 110267, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614282

ABSTRACT

BACKGROUND AND PURPOSE: Medulloblastoma (MB) is a common primary brain cancer in children. Proton therapy in pediatric MB is intensively studied and widely adopted. Compared to photon, proton radiations offer potential for reduced toxicity due to the characteristic Bragg Peak at the end of their path in tissue. The aim of this study was to compare the effects of irradiation with the same dose of protons or photons in Patched1 heterozygous knockout mice, a murine model predisposed to cancer and non-cancer radiogenic pathologies, including MB and lens opacity. MATERIALS AND METHODS: TOP-IMPLART is a pulsed linear proton accelerator for proton therapy applications. We compared the long-term health effects of 3 Gy of protons or photons in neonatal mice exposed at postnatal day 2, during a peculiarly susceptible developmental phase of the cerebellum, lens, and hippocampus, to genotoxic stress. RESULTS: Experimental testing of the 5 mm Spread-Out Bragg Peak (SOBP) proton beam, through evaluation of apoptotic response, confirmed that both cerebellum and hippocampus were within the SOBP irradiation field. While no differences in MB induction were observed after irradiation with protons or photons, lens opacity examination confirmed sparing of the lens after proton exposure. Marked differences in expression of neurogenesis-related genes and in neuroinflammation, but not in hippocampal neurogenesis, were observed after irradiation of wild-type mice with both radiation types. CONCLUSION: In-vivo experiments with radiosensitive mouse models improve our mechanistic understanding of the dependence of brain damage on radiation quality, thus having important implications in translational research.


Subject(s)
Animals, Newborn , Apoptosis , Hippocampus , Photons , Proton Therapy , Animals , Mice , Apoptosis/radiation effects , Proton Therapy/adverse effects , Hippocampus/radiation effects , Medulloblastoma/radiotherapy , Medulloblastoma/pathology , Carcinogenesis/radiation effects , Mice, Knockout , Cerebellar Neoplasms/radiotherapy , Cerebellar Neoplasms/pathology , Brain/radiation effects , Patched-1 Receptor/genetics , Disease Models, Animal , Protons/adverse effects
2.
Int J Mol Sci ; 24(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068942

ABSTRACT

Nanoparticles are being increasingly studied to enhance radiation effects. Among them, nanodiamonds (NDs) are taken into great consideration due to their low toxicity, inertness, chemical stability, and the possibility of surface functionalization. The objective of this study is to explore the influence of the chemical/physical properties of NDs on cellular radiosensitivity to combined treatments with radiation beams of different energies. DAOY, a human radioresistant medulloblastoma cell line was treated with NDs-differing for surface modifications [hydrogenated (H-NDs) and oxidized (OX-NDs)], size, and concentration-and analysed for (i) ND internalization and intracellular localization, (ii) clonogenic survival after combined treatment with different radiation beam energies and (iii) DNA damage and apoptosis, to explore the nature of ND-radiation biological interactions. Results show that chemical/physical characteristics of NDs are crucial in determining cell toxicity, with hydrogenated NDs (H-NDs) decreasing either cellular viability when administered alone, or cell survival when combined with radiation, depending on ND size and concentration, while OX-NDs do not. Also, irradiation at high energy (γ-rays at 1.25 MeV), in combination with H-NDs, is more efficient in eliciting radiosensitisation when compared to irradiation at lower energy (X-rays at 250 kVp). Finally, the molecular mechanisms of ND radiosensitisation was addressed, demonstrating that cell killing is mediated by the induction of Caspase-3-dependent apoptosis that is independent to DNA damage. Identifying the optimal combination of ND characteristics and radiation energy has the potential to offer a promising therapeutic strategy for tackling radioresistant cancers using H-NDs in conjunction with high-energy radiation.


Subject(s)
Nanodiamonds , Neoplasms , Humans , Nanodiamonds/chemistry , Radiation Tolerance , Cell Survival , Neoplasms/radiotherapy
3.
Vaccines (Basel) ; 11(6)2023 May 27.
Article in English | MEDLINE | ID: mdl-37376422

ABSTRACT

Electrochemotherapy (ECT) is a standard of care in veterinary and human oncology. The treatment induces a well-characterized local immune response which is not able to induce a systemic response. In this retrospective cohort study, we evaluated the addition of gene electrotransfer (GET) of canine IL-2 peritumorally and IL-12 intramuscularly to enhance the immune response. Thirty canine patients with inoperable oral malignant melanoma were included. Ten patients received ECT+GET as the treatment group, while twenty patients received ECT as the control group. Intravenous bleomycin for the ECT was used in both groups. All patients had compromised lymph nodes which were surgically removed. Plasma levels of interleukins, local response rate, overall survival, and progression-free survival were evaluated. The results show that IL-2 and IL-12 expression peaked around days 7-14 after transfection. Both groups showed similar local response rates and overall survival times. However, progression-free survival resulted significantly better in the ECT+GET group, which is a better indicator than overall survival, as it is not influenced by the criterion used for performing euthanasia. We can conclude that the combination of ECT+GET using IL-2 and IL-12 improves treatment outcomes by slowing down tumoral progression in stage III-IV inoperable canine oral malignant melanoma.

4.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37175984

ABSTRACT

Protons are now increasingly used to treat pediatric medulloblastoma (MB) patients. We designed and characterized a setup to deliver proton beams for in vivo radiobiology experiments at a TOP-IMPLART facility, a prototype of a proton-therapy linear accelerator developed at the ENEA Frascati Research Center, with the goal of assessing the feasibility of TOP-IMPLART for small animal proton therapy research. Mice bearing Sonic-Hedgehog (Shh)-dependent MB in the flank were irradiated with protons to test whether irradiation could be restricted to a specific depth in the tumor tissue and to compare apoptosis induced by the same dose of protons or photons. In addition, the brains of neonatal mice at postnatal day 5 (P5), representing a very small target, were irradiated with 6 Gy of protons with two different collimated Spread-Out Bragg Peaks (SOBPs). Apoptosis was visualized by immunohistochemistry for the apoptotic marker caspase-3-activated, and quantified by Western blot. Our findings proved that protons could be delivered to the upper part while sparing the deepest part of MB. In addition, a comparison of the effectiveness of protons and photons revealed a very similar increase in the expression of cleaved caspase-3. Finally, by using a very small target, the brain of P5-neonatal mice, we demonstrated that the proton irradiation field reached the desired depth in brain tissue. Using the TOP-IMPLART accelerator we established setup and procedures for proton irradiation, suitable for translational preclinical studies. This is the first example of in vivo experiments performed with a "full-linac" proton-therapy accelerator.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Mice , Animals , Protons , Medulloblastoma/radiotherapy , Caspase 3 , Cerebellar Neoplasms/radiotherapy , Radiobiology
5.
Front Plant Sci ; 14: 1142974, 2023.
Article in English | MEDLINE | ID: mdl-36938044

ABSTRACT

In sweet cherry (Prunus avium L.), flowering date is strongly dependent on the environment conditions and, therefore, is a trait of major interest for adaptation to climate change. Such trait can be influenced by genotype-by-environment interaction (G×E), that refers to differences in the response of genotypes to different environments. If not taken into account, G×E can reduce selection accuracy and overall genetic gain. However, little is known about G×E in fruit tree species. Flowering date is a highly heritable and polygenic trait for which many quantitative trait loci (QTLs) have been identified. As for the overall genetic performance, differential expression of QTLs in response to environment (QTL-by-environment interaction, QTL×E) can occur. The present study is based on the analysis of a multi-environment trial (MET) suitable for the study of G×E and QTL×E in sweet cherry. It consists of a sweet cherry F1 full-sib family (n = 121) derived from the cross between cultivars 'Regina' and 'Lapins' and planted in two copies in five locations across four European countries (France, Italy, Slovenia and Spain) covering a large range of climatic conditions. The aim of this work was to study the effect of the environment on flowering date and estimate G×E, to carry QTL detection in different environments in order to study the QTL stability across environments and to estimate QTL×E. A strong effect of the environment on flowering date and its genetic control was highlighted. Two large-effect and environment-specific QTLs with significant QTL×E were identified on linkage groups (LGs) 1 and 4. This work gives new insights into the effect of the environment on a trait of main importance in one of the most economically important fruit crops in temperate regions. Moreover, molecular markers were developed for flowering date and a strategy consisting in using specific markers for warm or cold regions was proposed to optimize marker-assisted selection (MAS) in sweet cherry breeding programs.

6.
Int J Mol Sci ; 24(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36982774

ABSTRACT

Given the known pro-oxidant status of tumour cells, the development of anti-proliferative strategies focuses on products with both anti- and pro-oxidant properties that can enhance antitumour drug cytotoxicity. We used a C. zeylanicum essential oil (CINN-EO) and assessed its effect on a human metastatic melanoma cell line (M14). Human PBMCs and MDMs from healthy donors were used as normal control cells. CINN-EO induced cell growth inhibition, cell cycle perturbation, ROS and Fe(II) increases, and mitochondrial membrane depolarization. To assess whether CINN-EO could affect the stress response, we analysed iron metabolism and stress response gene expression. CINN-EO increased HMOX1, FTH1, SLC7A11, DGKK, and GSR expression but repressed OXR1, SOD3, Tf, and TfR1 expression. HMOX1, Fe(II), and ROS increases are associated with ferroptosis, which can be reversed by SnPPIX, an HMOX1 inhibitor. Indeed, our data demonstrated that SnPPIX significantly attenuated the inhibition of cell proliferation, suggesting that the inhibition of cell proliferation induced by CINN-EO could be related to ferroptosis. Concurrent treatment with CINN-EO enhanced the anti-melanoma effect of two conventional antineoplastic drugs: the mitochondria-targeting tamoxifen and the anti-BRAF dabrafenib. We demonstrate that CINN-EO-mediated induction of an incomplete stress response specifically in cancer cells affects the proliferation of melanoma cells and can enhance drug cytotoxicity.


Subject(s)
Melanoma , Oils, Volatile , Humans , Oils, Volatile/pharmacology , Cinnamomum zeylanicum , Reactive Oxygen Species/pharmacology , Cell Proliferation , Melanoma/drug therapy , Ferrous Compounds/pharmacology , Cell Line, Tumor
7.
Plants (Basel) ; 12(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36771670

ABSTRACT

The present study aims to generalize cultivar-specific tree phenology responses to winter and spring temperatures and assess the effectiveness of the Tabuenca test and various chill and heat accumulation models in predicting bloom dates for a wide range of climatic conditions and years. To this end, we estimated the dates of rest completion and blooming and correlated them with observed bloom dates for 14 peach and nectarine cultivars that were evaluated in 11 locations across Europe (Greece, France, Italy, Romania and Spain), within the EUFRIN cultivar testing trial network. Chill accumulation varied considerably among the studied sites, ranging from 45 Chill Portions (CP) in Murcia-Torre Pacheco (Spain) to 97-98 CP in Cuneo (Italy) and Bucharest (Romania). Rest completion occurred latest or was not achieved at all for some cultivars in the southern sites in Murcia. Dormancy release happened earliest in Bucharest and Cuneo, sites where heat accumulation had a strong influence on the regulation of bloom time. Blooming occurred earliest in the moderately cold regions of Lleida (Spain) and Bellegarde (France), and 7-11 days later in the warmer locations of Rome (Italy) and Naoussa (Greece), suggesting that bloom timing is strongly influenced by delayed rest completion in these locations. The Dynamic Model resulted in both more homogeneous chill accumulation across years and better predictions of bloom dates, compared with the Utah, Positive Utah and Chilling Hours models. Prediction of bloom dates was less successful for low-chill cultivars than for medium- and high-chill cultivars. Further climatic and experimental data are needed to make estimates of the climatic needs of peach cultivars more robust and to generate reliable advice for enhancing the resilience of peach production under varying and changing climatic conditions.

8.
Int J Mol Sci ; 23(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36232813

ABSTRACT

Chronic inflammatory bowel disorders (IBD) are idiopathic diseases associated with altered intestinal permeability, which in turn causes an exaggerated immune response to enteric antigens in a genetically susceptible host. A rise in psych cognitive disorders, such as anxiety and depression, has been observed in IBD patients. We here report investigations on a model of chemically induced experimental colitis by oral administration of sodium dextran sulfate (DSS) in C57BL/6 mice. We investigate, in vivo, the crosstalk between the intestine and the brain, evaluating the consequences of intestinal inflammation on neuroinflammation and hippocampal adult neurogenesis. By using different DSS administration strategies, we are able to induce acute or chronic colitis, simulating clinical characteristics observed in IBD patients. Body weight loss, colon shortening, alterations of the intestinal mucosa and fecal metabolic changes in amino acids-, lipid- and thiamine-related pathways are observed in colitis. The activation of inflammatory processes in the colon is confirmed by macrophage infiltration and increased expression of the proinflammatory cytokine and oxidative stress marker (Il-6 and iNOS). Interestingly, in the hippocampus of acutely DSS-treated mice, we report the upregulation of inflammatory-related genes (Il-6, Il-1ß, S-100, Tgf-ß and Smad-3), together with microgliosis. Chronic DSS treatment also resulted in neuroinflammation in the hippocampus, indicated by astrocyte activation. Evaluation of stage-specific neurogenesis markers reveals deficits in the dentate gyrus after acute and chronic DSS treatments, indicative of defective adult hippocampal neurogenesis. Finally, based on a possible causal relationship between gut-related inflammation and brain cancer, we investigate the impact of DSS-induced colitis on oncogenesis, using the Ptch1+/-/C57BL/6 mice, a well-established medulloblastoma (MB) mouse model, finding no differences in MB development between untreated and DSS-treated mice. In conclusion, in our experimental model, the intestinal inflammation associated with acute and chronic colitis markedly influences brain homeostasis, impairing hippocampal neurogenesis but not MB oncogenesis.


Subject(s)
Brain Neoplasms , Colitis , Inflammatory Bowel Diseases , Amino Acids , Animals , Brain-Gut Axis , Carcinogenesis , Colitis/pathology , Colon/pathology , Cytokines/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Hippocampus/metabolism , Inflammation , Interleukin-6/metabolism , Lipids/adverse effects , Mice , Mice, Inbred C57BL , Neurogenesis , Sulfates , Thiamine , Transforming Growth Factor beta/metabolism
9.
Cell Death Discov ; 7(1): 330, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34725335

ABSTRACT

Over the last 20 years, the efforts to develop new therapies for Parkinson's disease (PD) have focused not only on the improvement of symptomatic therapy for motor and non-motor symptoms but also on the discovering of the potential causes of PD, in order to develop disease-modifying treatments. The emerging role of dysregulation of the Wnt/ß-catenin signaling in the onset and progression of PD, as well as of other neurodegenerative diseases (NDs), renders the targeting of this signaling an attractive therapeutic opportunity for curing this brain disorder. The natriuretic peptides (NPs) atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP), are cardiac and vascular-derived hormones also widely expressed in mammalian CNS, where they seem to participate in numerous brain functions including neural development/differentiation and neuroprotection. We recently demonstrated that ANP affects the Wnt/ß-catenin pathway possibly through a Frizzled receptor-mediated mechanism and that it acts as a neuroprotective agent in in vitro models of PD by upregulating this signaling. Here we provide further evidence supporting the therapeutic potential of this class of natriuretic hormones. Specifically, we demonstrate that all the three natriuretic peptides are neuroprotective for SHSY5Y cells and primary cultures of DA neurons from mouse brain, subjected to neurotoxin insult with 6-hydroxydopamine (6-OHDA) for mimicking the neurodegeneration of PD, and these effects are associated with the activation of the Wnt/ß-catenin pathway. Moreover, ANP, BNP, CNP are able to improve and accelerate the dopaminergic differentiation and maturation of hiPSCs-derived neural population obtained from two differed healthy donors, concomitantly affecting the canonical Wnt signaling. Our results support the relevance of exogenous ANP, BNP, and CNP as attractive molecules for both neuroprotection and neurorepair in PD, and more in general, in NDs for which aberrant Wnt signaling seems to be the leading pathogenetic mechanism.

10.
Plants (Basel) ; 10(10)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34685793

ABSTRACT

Sweet cherry (Prunus avium L.) is a temperate fruit species whose production might be highly impacted by climate change in the near future. Diversity of plant material could be an option to mitigate these climate risks by enabling producers to have new cultivars well adapted to new environmental conditions. In this study, subsets of sweet cherry collections of 19 European countries were genotyped using 14 SSR. The objectives of this study were (i) to assess genetic diversity parameters, (ii) to estimate the levels of population structure, and (iii) to identify germplasm redundancies. A total of 314 accessions, including landraces, early selections, and modern cultivars, were monitored, and 220 unique SSR genotypes were identified. All 14 loci were confirmed to be polymorphic, and a total of 137 alleles were detected with a mean of 9.8 alleles per locus. The average number of alleles (N = 9.8), PIC value (0.658), observed heterozygosity (Ho = 0.71), and expected heterozygosity (He = 0.70) were higher in this study compared to values reported so far. Four ancestral populations were detected using STRUCTURE software and confirmed by Principal Coordinate Analysis (PCoA), and two of them (K1 and K4) could be attributed to the geographical origin of the accessions. A N-J tree grouped the 220 sweet cherry accessions within three main clusters and six subgroups. Accessions belonging to the four STRUCTURE populations roughly clustered together. Clustering confirmed known genealogical data for several accessions. The large genetic diversity of the collection was demonstrated, in particular within the landrace pool, justifying the efforts made over decades for their conservation. New sources of diversity will allow producers to face challenges, such as climate change and the need to develop more sustainable production systems.

11.
Plants (Basel) ; 10(6)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207415

ABSTRACT

The objective of our study was the alignment of microsatellite or simple sequence repeat (SSR) marker data across germplasm collections of cherry within Europe. Through the European Cooperative program for Plant Genetic Resources ECPGR, a number of European germplasm collections had previously been analysed using standard sets of SSR loci. However, until now these datasets remained unaligned. We used a combination of standard reference genotypes and ad-hoc selections to compile a central dataset representing as many alleles as possible from national datasets produced in France, Great Britain, Germany, Italy, Sweden and Switzerland. Through the comparison of alleles called in data from replicated samples we were able to create a series of alignment factors, supported across 448 different allele calls, that allowed us to align a dataset of 2241 SSR profiles from six countries. The proportion of allele comparisons that were either in agreement with the alignment factor or confounded by null alleles ranged from 67% to 100% and this was further improved by the inclusion of a series of allele-specific adjustments. The aligned dataset allowed us to identify groups of previously unknown matching accessions and to identify and resolve a number of errors in the prior datasets. The combined and aligned dataset represents a significant step forward in the co-ordinated management of field collections of cherry in Europe.

12.
Foods ; 9(10)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066145

ABSTRACT

The rising interest in beneficial health properties of polyphenol compounds in fruit initiated this investigation about biochemical composition in peach mesocarp/exocarp. Biochemical evaluation of phenolic compounds and ascorbic acid were quantified through high-performance liquid chromatography (HPLC) in relation to three flesh colors (white, yellow and red) and four flesh typologies (melting, non-melting, slow softening and stony hard) within six commercial cultivars and eight breeding selections of peach/nectarine in 2007. While in 2008, quality and sensorial analyses were conducted on only three commercial cultivars ('Big Top', 'Springcrest' and 'Ghiaccio 1'). The red flesh selection demonstrated the highest levels of phenolic compounds (in mesocarp/exocarp) and ascorbic acid. Total phenolic concentration was approximately three-fold higher in the exocarp than the mesocarp across all accessions. Breeding selections generally reported higher levels of phenolics than commercial cultivars. Flesh textural typologies justified firmness differences at harvest, but minimally addressed variations in quality and phenolic compounds. Flesh pigmentation explained variation in the biochemical composition, with the red flesh accession characterized by an abundancy of phenolic compounds and a high potential for elevated antioxidant activity. Sensorial analyses ranked the cultivar with high soluble solids concentration:titratable acidity (SSC:TA) and reduced firmness the highest overall. Red flesh is a highly desirable trait for breeding programs aiming to improve consumption of peaches selected for nutraceutical properties.

13.
Plant Physiol ; 184(2): 632-646, 2020 10.
Article in English | MEDLINE | ID: mdl-32727910

ABSTRACT

Plants have evolved a range of adaptive mechanisms that adjust their development and physiology to variable external conditions, particularly in perennial species subjected to long-term interplay with the environment. Exploiting the allelic diversity within available germplasm and leveraging the knowledge of the mechanisms regulating genotype interaction with the environment are crucial to address climatic challenges and assist the breeding of novel cultivars with improved resilience. The development of multisite collections is of utmost importance for the conservation and utilization of genetic materials and will greatly facilitate the dissection of genotype-by-environment interaction. Such resources are still lacking for perennial trees, especially with the intrinsic difficulties of successful propagation, material exchange, and living collection maintenance. This work describes the concept, design, and realization of the first multisite peach (Prunus persica) reference collection (PeachRefPop) located across different European countries and sharing the same experimental design. Other than an invaluable tool for scientific studies in perennial species, PeachRefPop provides a milestone in an international collaborative project for the conservation and exploitation of European peach germplasm resources and, ultimately, as a true heritage for future generations.


Subject(s)
Prunus persica , Seed Bank , Europe
14.
Expert Opin Drug Discov ; 15(7): 803-822, 2020 07.
Article in English | MEDLINE | ID: mdl-32281421

ABSTRACT

INTRODUCTION: Wnt/ß-catenin signaling is an evolutionarily conserved pathway having a crucial role in embryonic and adult life. Specifically, the Wnt/ß-catenin axis is pivotal to the development and homeostasis of the nervous system, and its dysregulation has been associated with various neurological disorders, including neurodegenerative diseases. Therefore, this signaling pathway has been proposed as a potential therapeutic target against neurodegeneration. AREAS COVERED: This review focuses on the role of Wnt/ß-catenin pathway in the pathogenesis of neurodegenerative diseases, including Parkinson's, Alzheimer's Diseases and Amyotrophic Lateral Sclerosis. The evidence showing that defects in the signaling might be involved in the development of these diseases, and the pharmacological approaches tested so far, are discussed. The possibilities that this pathway offers in terms of new therapeutic opportunities are also considered. EXPERT OPINION: The increasing interest paid to the role of Wnt/ß-catenin pathway in the onset of neurodegenerative diseases demonstrates how targeting this signaling for therapeutic purposes could be a great opportunity for both neuroprotection and neurorepair. Without overlooking some licit concerns about drug safety and delivery to the brain, there is growing and more convincing evidence that restoring this signaling in neurodegenerative diseases may strongly increase the chance to develop disease-modifying treatments for these brain pathologies.


Subject(s)
Molecular Targeted Therapy , Neurodegenerative Diseases/drug therapy , Wnt Signaling Pathway/physiology , Animals , Brain/physiopathology , Drug Development , Humans , Neurodegenerative Diseases/physiopathology , Tissue Distribution
15.
Cancer Lett ; 478: 133-145, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32112906

ABSTRACT

Emerging data indicate that the reverse transcriptase (RT) protein encoded by LINE-1 transposable elements is a promising cancer target. Nonnucleoside RT inhibitors, e.g. efavirenz (EFV) and SPV122.2, reduce proliferation and promote differentiation of cancer cells, concomitant with a global reprogramming of the transcription profile. Both inhibitors have therapeutic anticancer efficacy in animal models. Here we have sought to clarify the mechanisms of RT inhibitors in cancer cells. We report that exposure of PC3 metastatic prostate carcinoma cells to both RT inhibitors results in decreased proliferation, and concomitantly induces genome damage. This is associated with rearrangements of the nuclear architecture, particularly at peripheral chromatin, disruption of the nuclear lamina, and budding of micronuclei. These changes are reversible upon discontinuation of the RT-inhibitory treatment, with reconsititution of the lamina and resumption of the cancer cell original features. The use of pharmacological autophagy inhibitors proves that autophagy is largely responsible for the antiproliferative effect of RT inhibitors. These alterations are not induced in non-cancer cell lines exposed to RT inhibitors. These data provide novel insight in the molecular pathways targeted by RT inhibitors in cancer cells.


Subject(s)
Alkynes/pharmacology , Benzoxazines/pharmacology , Cell Nucleus/drug effects , Cyclopropanes/pharmacology , Prostatic Neoplasms/genetics , Pyrimidinones/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Autophagy , Cell Differentiation , Cell Line, Tumor , Cell Nucleus/genetics , Cell Proliferation/drug effects , DNA Damage , Humans , Male , PC-3 Cells , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism
16.
Neurobiol Dis ; 138: 104792, 2020 05.
Article in English | MEDLINE | ID: mdl-32027933

ABSTRACT

Activation of the integrated stress response (ISR), alterations in nucleo-cytoplasmic (N/C) transport and changes in alternative splicing regulation are all common traits of the pathogenesis of Amyotrophic Lateral Sclerosis (ALS). However, whether these processes act independently from each other, or are part of a coordinated mechanism of gene expression regulation that is affected in pathogenic conditions, is still rather undefined. To answer these questions, in this work we set out to characterise the functional connections existing between ISR activation and nucleo-cytosol trafficking and nuclear localization of spliceosomal U-rich small nuclear ribonucleoproteins (UsnRNPs), the core constituents of the spliceosome, and to study how ALS-linked mutant proteins affect this interplay. Activation of the ISR induces a profound reorganization of nuclear Gems and Cajal bodies, the membrane-less particles that assist UsnRNP maturation and storage. This effect requires the cytoplasmic assembly of SGs and is associated to the disturbance of the nuclear import of UsnRNPs by the snurportin-1/importin-ß1 system. Notably, these effects are reversed by both inhibiting the ISR or upregulating importin-ß1. This indicates that SGs are major determinants of Cajal bodies assembly and that the modulation of N/C trafficking of UsnRNPs might control alternative splicing in response to stress. Importantly, the dismantling of nuclear Gems and Cajal bodies by ALS-linked mutant FUS or C9orf72-derived dipeptide repeat proteins is halted by overexpression of importin-ß1, but not by inhibition of the ISR. This suggests that changes in the nuclear localization of the UsnRNP complexes induced by mutant ALS proteins are uncoupled from ISR activation, and that defects in the N/C trafficking of UsnRNPs might play a role in ALS pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Mutant Proteins/genetics , Ribonucleoproteins, Small Nuclear/genetics , Alternative Splicing , Amyotrophic Lateral Sclerosis/metabolism , Animals , C9orf72 Protein/genetics , Cell Nucleus/genetics , Cytoplasm/genetics , DNA-Binding Proteins/genetics , Humans , Mice , Motor Neurons/pathology , Mutation , Protein Transport/genetics , RNA-Binding Protein FUS/genetics
17.
Hortic Res ; 6: 6, 2019.
Article in English | MEDLINE | ID: mdl-30603092

ABSTRACT

The timing of fruit maturity is an important trait in sweet cherry production and breeding. Phenotypic variation for phenology of fruit maturity in sweet cherry appears to be under strong genetic control, but that control might be complicated by phenotypic instability across environments. Although such genotype-by-environment interaction (G × E) is a common phenomenon in crop plants, knowledge about it is lacking for fruit maturity timing and other sweet cherry traits. In this study, 1673 genome-wide SNP markers were used to estimate genomic relationships among 597 weakly pedigree-connected individuals evaluated over two seasons at three locations in Europe and one location in the USA, thus sampling eight 'environments'. The combined dataset enabled a single meta-analysis to investigate the environmental stability of genomic predictions. Linkage disequilibrium among marker loci declined rapidly with physical distance, and ordination of the relationship matrix suggested no strong structure among germplasm. The most parsimonious G × E model allowed heterogeneous genetic variance and pairwise covariances among environments. Narrow-sense genomic heritability was very high (0.60-0.83), as was accuracy of predicted breeding values (>0.62). Average correlation of additive effects among environments was high (0.96) and breeding values were highly correlated across locations. Results indicated that genomic models can be used in cherry to accurately predict date of fruit maturity for untested individuals in new environments. Limited G × E for this trait indicated that phenotypes of individuals will be stable across similar environments. Equivalent analyses for other sweet cherry traits, for which multiple years of data are commonly available among breeders and cultivar testers, would be informative for predicting performance of elite selections and cultivars in new environments.

18.
J Sci Food Agric ; 99(4): 1795-1803, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30255587

ABSTRACT

BACKGROUND: In peach fruit, carotenoid accumulation in the mesocarp causes the difference between yellow and white genotypes. The latter are generally characterized by a peculiar and more intense aroma, because of higher release of volatiles deriving from dioxygenase-catalysed breakdown of the tetraterpene skeleton. The rate of carotenoid oxidation was investigated in peach (Prunus persica L.) fruits harvested at various stages of development. Two couples of white and yellow-fleshed isogenic varieties and an ancestral white-fleshed genotype were analysed, which had previously shown to differ in Carotenoid Cleavage Dioxygenase 4 allelic composition resulting in various combinations of putatively active/inactive proteins. RESULTS: Carotenoid bleaching activity was localized in the insoluble fraction of fruit flesh chromoplasts. Higher rates of trans-ß-apo-8'-carotenal than ß-carotene bleaching suggest that the first cleavage reaction is the rate-limiting step. Consistently, HPLC analysis did not show the appearance of coloured intermediates in reaction mixtures. High levels of substrate breakdown were found during the initial phases of fruit development in all genotypes examined, whereas significant differences were evident during the second exponential growth phase and ripening onset. Also, the ratio of carotene versus carotenale utilization varied significantly. CONCLUSION: Pattern comparison among activity levels measured in vitro on chromoplast enriched fractions suggests that cleavage enzyme(s) other than Carotenoid Cleavage Dioxygenase 4 play a significant role in carotenoid breakdown during fruit development and ripening. © 2018 Society of Chemical Industry.


Subject(s)
Carotenoids/metabolism , Plastids/metabolism , Prunus persica/metabolism , Carotenoids/analysis , Chromatography, High Pressure Liquid , Dioxygenases/genetics , Dioxygenases/metabolism , Fruit/chemistry , Fruit/enzymology , Fruit/genetics , Fruit/metabolism , Genotype , Oxidation-Reduction , Plant Proteins/genetics , Plant Proteins/metabolism , Plastids/enzymology , Plastids/genetics , Prunus persica/chemistry , Prunus persica/enzymology , Prunus persica/genetics
19.
Front Pharmacol ; 10: 1541, 2019.
Article in English | MEDLINE | ID: mdl-32038234

ABSTRACT

Drypetes klainei Pierre ex Pax is used in Cameroon by Baka people in the wound healing process and for the treatment of burns. In a previous paper we demonstrated the ability of both water (WE) and defatted methanol (DME) extracts to accelerate scratch wound closure in fibroblast cultures, thus validating the traditional use of D. klainey stem bark in the treatment of skin lesions. In this work we carried out a bioassay-guided fractionation of the most active DME, which exhibited in vitro efficacy in accelerating wound healing process, in order to isolate and identify the compound/s responsible for the assessed biological activity. HPLC was used for the metabolite profiling of DME and fractions (analytical) and for the isolation of the bioactive compound (semi-preparative). MS analyses and NMR spectroscopy were used for identifying the isolated compound. The abilities of treatments in accelerating wound healing were studied on murine fibroblasts in terms of cell viability and cell migration (scratch wound-healing assay). The results obtained allowed to unambiguously identify the isolated bioactive compound as nigracin, a known phenolic glycoside firstly isolated and characterized from bark and leaves of Populus nigra in 1967. However, this is the first time that nigracin is identified in the Drypetes genus and that a wound healing activity is demonstrated for this molecule. Specifically, we demonstrated that nigracin significantly stimulates fibroblast growth and improves cell motility and wound closure of fibroblast monolayer in a dose-dependent manner, without any toxicity at the concentrations tested, and is still active at very low doses. This makes the molecule particularly attractive as a possible candidate for developing new therapeutic options for wound care.

20.
Biomed Pharmacother ; 107: 155-167, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30086462

ABSTRACT

Psoriasis is one of the most common chronic autoinflammatory skin disease, associated with hyperproliferation and abnormal differentiation of keratinocytes, inflammation, and angiogenesis. The available treatments for psoriasis are not curative and may have numerous side effects, and topical administration is preferred over systemic therapy due to the reduced systemic burden of the drug. Thus, novel and more efficacious formulations of anti-inflammatory and/or differentiating compounds for topical application could be very useful for the disease management and for improving the quality of life of the patients. Here we evaluated the potential as anti-psoriatic of an equimolar mixture of two compounds, 2,4-Monofurfurylidene-tetra-O-methylsorbitol (Compound A) and 4,6-dimethyl-2-(3,4,5-trimethoxyphenylamino)pyrimidine (Compound B), that, used individually, are known to possess immunomodulating properties (Compound A) and keratolitic and anti-inflammatory activity (Compound B). Human immortalized keratinocyte cell line (HaCaT cells) and primary human keratinocyte cells from adult donor (HEKa) were used as in vitro experimental models. We show that the mix A + B exhibits antiproliferative activity and induces terminal differentiation more efficiently than compounds A and B used individually. We confirm that the compound B is the active ingredient of the mixture and the mainly responsible for anti-psoriatic activity, but the mix A + B is more effective and possesses lower cytotoxicity than the compound B alone. This could be ascribable to the association with compound A, that is known to possess, in addition to the immunomodulating ability, antioxidant and antiradical action. Our results indicate that mix A + B could be a suitable candidate for a new cosmeceutical formulation for topical treatment of psoriasis.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Differentiation/drug effects , Cyclohexylamines/pharmacology , Dermatologic Agents/pharmacology , Keratinocytes/drug effects , Pyrimidines/pharmacology , Sorbitol/analogs & derivatives , Adult , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Biomarkers/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Transformed , Cell Proliferation/drug effects , Cell Shape/drug effects , Cell Survival/drug effects , Cells, Cultured , Cyclohexylamines/chemistry , Dermatologic Agents/chemistry , Drug Synergism , Humans , Keratinocytes/cytology , Psoriasis/drug therapy , Pyrimidines/chemistry , Reactive Oxygen Species/metabolism , Sorbitol/chemistry , Sorbitol/pharmacology , Tissue Donors
SELECTION OF CITATIONS
SEARCH DETAIL
...