Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Clin Cancer Res ; 28(23): 5190-5201, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36166004

ABSTRACT

PURPOSE: Advanced-stage gastrointestinal cancers represent a high unmet need requiring new effective therapies. We investigated the antitumor activity of a novel T cell-engaging antibody (B7-H6/CD3 ITE) targeting B7-H6, a tumor-associated antigen that is expressed in gastrointestinal tumors. EXPERIMENTAL DESIGN: Membrane proteomics and IHC analysis identified B7-H6 as a tumor-associated antigen in gastrointestinal tumor tissues with no to very little expression in normal tissues. The antitumor activity and mode of action of B7-H6/CD3 ITE was evaluated in in vitro coculture assays, in humanized mouse tumor models, and in colorectal cancer precision cut tumor slice cultures. RESULTS: B7-H6 expression was detected in 98% of colorectal cancer, 77% of gastric cancer, and 63% of pancreatic cancer tissue samples. B7-H6/CD3 ITE-mediated redirection of T cells toward B7-H6-positive tumor cells resulted in B7-H6-dependent lysis of tumor cells, activation and proliferation of T cells, and cytokine secretion in in vitro coculture assays, and infiltration of T cells into tumor tissues associated with tumor regression in in vivo colorectal cancer models. In primary patient-derived colorectal cancer precision-cut tumor slice cultures, treatment with B7-H6/CD3 ITE elicited cytokine secretion by endogenous tumor-infiltrating immune cells. Combination with anti-PD-1 further enhanced the activity of the B7-H6/CD3 ITE. CONCLUSION: These data highlight the potential of the B7-H6/CD3 ITE to induce T cell-redirected lysis of tumor cells and recruitment of T cells into noninflamed tumor tissues, leading to antitumor activity in in vitro, in vivo, and human tumor slice cultures, which supports further evaluation in a clinical study.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Neoplasms , Mice , Animals , Humans , B7 Antigens/metabolism , Gastrointestinal Neoplasms/drug therapy , T-Lymphocytes , Colorectal Neoplasms/drug therapy , Cytokines , Immunoglobulin G
2.
Eur J Pharm Biopharm ; 168: 110-121, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34478854

ABSTRACT

Monoclonal antibody (mAb)-based drugs are critical anti-cancer therapies. Unfortunately, therapeutic efficacy can be compromised by spatially heterogeneous intratumoral Ab deposition. Binding-site barriers arising from Ab and tumor-associated kinetics often underlie this phenomenon. Quantitative insight into these issues may lead to more efficient drug delivery. Difficulties in addressing this issue include (1) lack of techniques to quantify critical kinetic events, (2) lack of a pharmacokinetic/pharmacodynamic (PK/PD) model to assess important parameters for specific tumor types, and (3) uncertainty or variability of critical kinetic factors even within a single tumor type. This study developed a mechanism-based PK/PD model to profile heterogeneous distribution of Ab within tumors and tested this model using real-life experimental data. Model simulations incorporating several uncertainties were used to determine how mAb and tumor-associated kinetics influence receptor occupancy. Simulations were also used to predict the potential impact of these findings in preclinical tumor models and human tumors. We found significant differences in tumor-associated kinetics between groups in which mAb therapy was effective versus groups in which it was ineffective. These kinetic differences included rates of tumor-associated antigen (TAA) degradation, TAA expression, apparent flow rates of interstitial fluid, and ratios of Ab-TAA complex internalization to TAA degradation. We found less significant differences in mAb kinetics, including rates of clearance or affinity for target antigens. In conclusion, our mechanism-based PK/PD model suggests that TAA-associated kinetic factors participate more significantly than those associated with the Ab in generating barriers to mAb delivery and distribution in tumors.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Models, Biological , Neoplasms/drug therapy , Animals , Antibodies, Monoclonal/pharmacokinetics , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/pharmacokinetics , Computer Simulation , Drug Delivery Systems , Humans , Mice , Neoplasms/pathology , Tissue Distribution , Xenograft Model Antitumor Assays
3.
MAbs ; 13(1): 1964935, 2021.
Article in English | MEDLINE | ID: mdl-34530672

ABSTRACT

Constant technological advancement enabled the production of therapeutic monoclonal antibodies (mAbs) and will continue to contribute to their rapid expansion. Compared to small-molecule drugs, mAbs have favorable characteristics, but also more complex pharmacokinetics (PK), e.g., target-mediated nonlinear elimination and recycling by neonatal Fc-receptor. This review briefly discusses mAb biology, similarities and differences in PK processes across species and within human, and provides a detailed overview of allometric scaling approaches for translating mAb PK from preclinical species to human and extrapolating from adults to children. The approaches described here will remain vital in mAb drug development, although more data are needed, for example, from very young patients and mAbs with nonlinear PK, to allow for more confident conclusions and contribute to further growth of this field. Improving mAb PK predictions will facilitate better planning of (pediatric) clinical studies and enable progression toward the ultimate goal of expediting drug development.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Agents, Immunological , Adult , Child , Humans , Infant, Newborn , Models, Biological
4.
ACS Pharmacol Transl Sci ; 4(1): 213-225, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33615174

ABSTRACT

Progress in immunotherapy has resulted in explosively increased new therapeutic interventions and they have shown promising results in the treatment of cancer. Animal testing is performed to provide preliminary efficacy and safety data for drugs under development prior to clinical trials. However, translational challenges remain for preclinical studies such as study design and the relevance of animal models to humans. Hence, only a small fraction of cancer patients showed response. The explosion of drug candidates and therapies makes preclinical assessment of every plausible option impossible, but it can be easily tested using Quantitative System Pharmacology (QSP) models. Here, we developed a QSP model for humanized mice. Tumor growth dynamics, T cell dynamics, cytokine release, immune checkpoint expression, and drug administration were modeled and calibrated using experimental data. Tumor growth inhibition data were used for model validation. Pharmacokinetics of T cell engager (TCE), tumor growth profile, T cell expansion in the blood and infiltration into tumor, T cell dissemination from primary tumor, cytokine release profile, and expression of additional PD-L1 induced by IFN-γ were modeled and calibrated using a variety of experimental data and showed good consistency. Mouse-specific response to T cell engager monotherapy also showed the key features of in vivo efficacy of TCE. This novel QSP model, designed for human peripheral blood mononuclear cells (PBMC) engrafted xenograft mice, incorporating the most critical components of the mouse model with key cancer and immune cells, can become an integral part of preclinical drug development.

5.
Mol Cancer Ther ; 20(1): 96-108, 2021 01.
Article in English | MEDLINE | ID: mdl-33037135

ABSTRACT

Activation of TRAILR2 has emerged as an important therapeutic concept in cancer treatment. TRAILR2 agonistic molecules have only had limited clinical success, to date, due either to lack of efficacy or hepatotoxicity. BI 905711 is a novel tetravalent bispecific antibody targeting both TRAILR2 and CDH17 and represents a novel liver-sparing TRAILR2 agonist specifically designed to overcome the disadvantages of previous strategies. Here, we show that BI 905711 effectively triggered apoptosis in a broad panel of CDH17-positive colorectal cancer tumor cells in vitro. Efficient induction of apoptosis was dependent on the presence of CDH17, as exemplified by the greater than 1,000-fold drop in potency in CDH17-negative cells. BI 905711 demonstrated single-agent tumor regressions in CDH17-positive colorectal cancer xenografts, an effect that was further enhanced upon combination with irinotecan. Antitumor efficacy correlated with induction of caspase activation, as measured in both the tumor and plasma. Effective tumor growth inhibition was further demonstrated across a series of different colorectal cancer PDX models. BI 905711 induced apoptosis in both a cis (same cell) as well as trans (adjacent cell) fashion, translating into significant antitumor activity even in xenograft models with heterogeneous CDH17 expression. In summary, we demonstrate that BI 905711 has potent and selective antitumor activity in CDH17-positive colorectal cancer models both in vitro and in vivo. The high prevalence of over 95% CDH17-positive tumors in patients with colorectal cancer, the molecule preclinical efficacy together with its potential for a favorable safety profile, support the ongoing BI 905711 phase I trial in colorectal cancer and additional CDH17-positive cancer types (NCT04137289).


Subject(s)
Antibodies, Bispecific/pharmacology , Apoptosis , Cadherins/metabolism , Colorectal Neoplasms/pathology , Liver/pathology , Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists , Xenograft Model Antitumor Assays , Animals , Apoptosis/drug effects , Caspases/metabolism , Cell Line, Tumor , Humans , Liver/drug effects , Mice , Neoplasm Metastasis , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Remission Induction
6.
J Immunother Cancer ; 8(2)2020 08.
Article in English | MEDLINE | ID: mdl-32859743

ABSTRACT

BACKGROUND: T cells have been recognized as core effectors for cancer immunotherapy. How to restore the anti-tumor ability of suppressed T cells or improve the lethality of cytotoxic T cells has become the main focus in immunotherapy. Bispecific antibodies, especially bispecific T cell engagers (TCEs), have shown their unique ability to enhance the patient's immune response to tumors by stimulating T cell activation and cytokine production in an MHC-independent manner. Antibodies targeting the checkpoint inhibitory molecules such as programmed cell death protein 1 (PD-1), PD-ligand 1 (PD-L1) and cytotoxic lymphocyte activated antigen 4 are able to restore the cytotoxic effect of immune suppressed T cells and have also shown durable responses in patients with malignancies. However, both types have their own limitations in treating certain cancers. Preclinical and clinical results have emphasized the potential of combining these two antibodies to improve tumor response and patients' survival. However, the selection and evaluation of combination partners clinically is a costly endeavor. In addition, despite advances made in immunotherapy, there are subsets of patients who are non-responders, and reliable biomarkers for different immunotherapies are urgently needed to improve the ability to prospectively predict patients' response and improve clinical study design. Therefore, mathematical and computational models are essential to optimize patient benefit, and guide combination approaches with lower cost and in a faster manner. METHOD: In this study, we continued to extend the quantitative systems pharmacology (QSP) model we developed for a bispecific TCE to explore efficacy of combination therapy with an anti-PD-L1 monoclonal antibody in patients with colorectal cancer. RESULTS: Patient-specific response to TCE monotherapy, anti-PD-L1 monotherapy and the combination therapy were predicted using this model according to each patient's individual characteristics. CONCLUSIONS: Individual biomarkers for TCE monotherapy, anti-PD-L1 monotherapy and their combination have been determined based on the QSP model. Best treatment options for specific patients could be suggested based on their own characteristics to improve clinical trial efficiency. The model can be further used to assess plausible combination strategies for different TCEs and immune checkpoint inhibitors in different types of cancer.


Subject(s)
Combined Modality Therapy/methods , Immunotherapy/methods , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/immunology , Female , Humans , Male , Quantitative Structure-Activity Relationship
7.
Clin Cancer Res ; 26(19): 5258-5268, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32554516

ABSTRACT

PURPOSE: Small cell lung cancer (SCLC) is the most lethal and aggressive subtype of lung carcinoma characterized by highly chemotherapy-resistant recurrence in the majority of patients. To effectively treat SCLC, we have developed a unique and novel IgG-like T-cell engaging bispecific antibody (ITE) that potently redirects T-cells to specifically lyse SCLC cells expressing Delta-like ligand 3 (DLL3), an antigen that is frequently expressed on the cell surface of SCLC cells, with no to very little detectable expression in normal tissues. EXPERIMENTAL DESIGN: The antitumor activity and mode of action of DLL3/CD3 ITE was evaluated in vitro using SCLC cell lines and primary human effector cells and in vivo in an SCLC xenograft model reconstituted with human CD3+ T-cells. RESULTS: Selective binding of DLL3/CD3 ITE to DLL3-positive tumor cells and T-cells induces formation of an immunological synapse resulting in tumor cell lysis and activation of T-cells. In a human T-cell engrafted xenograft model, the DLL3/CD3 ITE leads to an increase in infiltration of T-cells into the tumor tissue resulting in apoptosis of the tumor cells and tumor regression. Consistent with the mode of action, the DLL3/CD3 ITE treatment led to upregulation of PD-1, PD-L1, and LAG-3. CONCLUSIONS: This study highlights the ability of the DLL3/CD3 ITE to induce strictly DLL3-dependent T-cell redirected lysis of tumor cells and recruitment of T-cells into noninflamed tumor tissues leading to tumor regression in a preclinical in vivo model. These data support clinical testing of the DLL3/CD3 ITE in patients with SCLC.


Subject(s)
CD3 Complex/genetics , Cell Proliferation/drug effects , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Small Cell Lung Carcinoma/drug therapy , T-Lymphocytes/drug effects , Animals , Antibodies, Bispecific/pharmacology , Antigens, CD/genetics , Apoptosis/drug effects , B7-H1 Antigen/genetics , Cell Lineage/drug effects , Cell Lineage/immunology , Female , Gene Expression Regulation, Neoplastic/drug effects , Heterografts , Humans , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Programmed Cell Death 1 Receptor/genetics , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/immunology , Small Cell Lung Carcinoma/pathology , T-Lymphocytes/immunology , Lymphocyte Activation Gene 3 Protein
8.
AAPS J ; 22(4): 85, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32533270

ABSTRACT

Cancer immunotherapy has recently drawn remarkable attention as promising results in the clinic have shown its ability to improve the overall survival, and T cells are considered to be one of the primary effectors for cancer immunotherapy. Enhanced and restored T cell tumoricidal activity has shown great potential for killing cancer cells. Bispecific T cell engagers (TCEs) are a growing class of molecules that are designed to bind two different antigens on the surface of T cells and cancer cells to bring them in close proximity and selectively activate effector T cells to kill target cancer cells. New T cell engagers are being investigated for the treatment of solid tumors. The activity of newly developed T cell engagers showed a strong correlation with tumor target antigen expression. However, the correlation between tumor-associated antigen expression and overall response of cancer patients is poorly understood. In this study, we used a well-calibrated quantitative systems pharmacology (QSP) model extended to bispecific T cell engagers to explore their efficacy and identify potential biomarkers. In principle, patient-specific response can be predicted through this model according to each patient's individual characteristics. This extended QSP model has been calibrated with available experimental data and provides predictions of patients' response to TCE treatment.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Colorectal Neoplasms/drug therapy , Immunotherapy/methods , Models, Biological , Systems Biology/methods , T-Lymphocytes/drug effects , Antineoplastic Agents, Immunological/therapeutic use , Colorectal Neoplasms/immunology , Humans , T-Lymphocytes/immunology
9.
MAbs ; 11(5): 956-964, 2019 07.
Article in English | MEDLINE | ID: mdl-31068073

ABSTRACT

Accurate prediction of the human pharmacokinetics (PK) of a candidate monoclonal antibody from nonclinical data is critical to maximize the success of clinical trials. However, for monoclonal antibodies exhibiting nonlinear clearance due to target-mediated drug disposition, PK predictions are particularly challenging. That challenge is further compounded for molecules lacking cross-reactivity in a nonhuman primate, in which case a surrogate antibody selective for the target in rodent may be required. For these cases, prediction of human PK must account for any interspecies differences in binding kinetics, target expression, target turnover, and potentially epitope. We present here a model-based method for predicting the human PK of MAB92 (also known as BI 655130), a humanized IgG1 κ monoclonal antibody directed against human IL-36R. Preclinical PK was generated in the mouse with a chimeric rat anti-mouse IgG2a surrogate antibody cross-reactive against mouse IL-36R. Target-specific parameters such as antibody binding affinity (KD), internalization rate of the drug target complex (kint), target degradation rate (kdeg), and target abundance (R0) were integrated into the model. Two different methods of assigning human R0 were evaluated: the first assumed comparable expression between human and mouse and the second used high-resolution mRNA transcriptome data (FANTOM5) as a surrogate for expression. Utilizing the mouse R0 to predict human PK, AUC0-∞ was substantially underpredicted for nonsaturating doses; however, after correcting for differences in RNA transcriptome between species, AUC0-∞ was predicted largely within 1.5-fold of observations in first-in-human studies, demonstrating the validity of the modeling approach. Our results suggest that semi-mechanistic models incorporating RNA transcriptome data and target-specific parameters may improve the predictivity of first-in-human PK.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacokinetics , Receptors, Interleukin-1/immunology , Animals , Female , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL , Models, Biological , Rats , Receptors, Interleukin-1/metabolism , Retrospective Studies , Transcriptome
10.
Sci Rep ; 8(1): 4241, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29523796

ABSTRACT

Pharmacological administration of FGF21 analogues has shown robust body weight reduction and lipid profile improvement in both dysmetabolic animal models and metabolic disease patients. Here we report the design, optimization, and characterization of a long acting glyco-variant of FGF21. Using a combination of N-glycan engineering for enhanced protease resistance and improved solubility, Fc fusion for further half-life extension, and a single point mutation for improving manufacturability in Chinese Hamster Ovary cells, we created a novel FGF21 analogue, Fc-FGF21[R19V][N171] or PF-06645849, with substantially improved solubility and stability profile that is compatible with subcutaneous (SC) administration. In particular, it showed a low systemic clearance (0.243 mL/hr/kg) and long terminal half-life (~200 hours for intact protein) in cynomolgus monkeys that approaches those of monoclonal antibodies. Furthermore, the superior PK properties translated into robust improvement in glucose tolerance and the effects lasted 14 days post single SC dose in ob/ob mice. PF-06645849 also caused greater body weight loss in DIO mice at lower and less frequent SC doses, compared to previous FGF21 analogue PF-05231023. In summary, the overall PK/PD and pharmaceutical profile of PF-06645849 offers great potential for development as weekly to twice-monthly SC administered therapeutic for chronic treatment of metabolic diseases.


Subject(s)
Fibroblast Growth Factors/pharmacokinetics , Animals , CHO Cells , Cricetinae , Cricetulus , Fibroblast Growth Factors/administration & dosage , Fibroblast Growth Factors/chemistry , Glycosylation , HEK293 Cells , Humans , Injections, Subcutaneous , Macaca fascicularis , Metabolic Clearance Rate , Mice , Protein Stability , Proteolysis , Tissue Distribution
11.
MAbs ; 9(7): 1105-1117, 2017 10.
Article in English | MEDLINE | ID: mdl-28786732

ABSTRACT

Antibodies with pH-dependent binding to both target antigens and neonatal Fc receptor (FcRn) provide an alternative tool to conventional neutralizing antibodies, particularly for therapies where reduction in antigen level is challenging due to high target burden. However, the requirements for optimal binding kinetic framework and extent of pH dependence for these antibodies to maximize target clearance from circulation are not well understood. We have identified a series of naturally-occurring high affinity antibodies with pH-dependent target binding properties. By in vivo studies in cynomolgus monkeys, we show that pH-dependent binding to the target alone is not sufficient for effective target removal from circulation, but requires Fc mutations that increase antibody binding to FcRn. Affinity-enhanced pH-dependent FcRn binding that is double-digit nM at pH 7.4 and single-digit nM at pH 6 achieved maximal target reduction when combined with similar target binding affinities in reverse pH directions. Sustained target clearance below the baseline level was achieved 3 weeks after single-dose administration at 1.5 mg/kg. Using the experimentally derived mechanistic model, we demonstrate the essential kinetic interplay between target turnover and antibody pH-dependent binding during the FcRn recycling, and identify the key components for achieving maximal target clearance. These results bridge the demand for improved patient dosing convenience with the "know-how" of therapeutic modality by design.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Antibodies, Neutralizing/pharmacology , Histocompatibility Antigens Class I/immunology , Receptors, Fc/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibody Affinity/immunology , Humans , Hydrogen-Ion Concentration , Macaca fascicularis
12.
MAbs ; 8(8): 1606-1611, 2016.
Article in English | MEDLINE | ID: mdl-27598372

ABSTRACT

Prior to clinical studies, the pharmacokinetics (PK) of antibody-based therapeutics are characterized in preclinical species; however, those species can elicit immunogenic responses that can lead to an inaccurate estimation of PK parameters. Immunodeficient (SCID) transgenic hFcRn and C57BL/6 mice were used to characterize the PK of three antibodies that were previously shown to be immunogenic in mice and cynomolgus monkeys. Four mouse strains, Tg32 hFcRn SCID, Tg32 hFcRn, SCID and C57BL/6, were administered adalimumab (Humira®), mAbX and mAbX-YTE at 1 mg/kg, and in SCID strains there was no incidence of immunogenicity. In non-SCID strains, drug-clearing ADAs appeared after 4-7 days, which affected the ability to accurately calculate PK parameters. Single species allometric scaling of PK data for Humira® in SCID and hFcRn SCID mice resulted in improved human PK predictions compared to C57BL/6 mice. Thus, the SCID mouse model was demonstrated to be a useful tool for assessing the preclinical PK of immunogenic therapeutics.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Models, Animal , Adalimumab/pharmacology , Animals , Histocompatibility Antigens Class I , Humans , Metabolic Clearance Rate , Mice , Mice, Inbred C57BL , Mice, SCID , Mice, Transgenic , Receptors, Fc
13.
Drug Metab Dispos ; 43(6): 803-11, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25805881

ABSTRACT

PF-05231023, a long-acting fibroblast growth factor 21 (FGF21) analog, was generated by covalently conjugating two engineered [des-His1, Ala129Cys]FGF21 molecules to a nontargeting human IgG1 κ scaffold. The pharmacokinetics (PK) of PF-05231023 after i.v. and s.c. administration was evaluated in rats and monkeys using two enzyme-linked immunosorbent assays with high specificity for biologically relevant intact N termini (NT) and C termini (CT) of FGF21. Intact CT of FGF21 displayed approximately 5-fold faster systemic plasma clearance (CL), an approximately 2-fold lower steady-state volume of distribution, and at least 5-fold lower bioavailability compared with NT. In vitro serum stability studies in monkeys and humans suggested that the principal CL mechanism for PF-05231023 was degradation by serum proteases. Direct scaling of in vitro serum degradation rates for intact CT of FGF21 underestimated in vivo CL 5-fold, 1.4-fold, and 2-fold in rats, monkeys, and humans, respectively. The reduced steady-state volume of distribution and the bioavailability for intact CT relative to NT in rats and monkeys were compatible with proteolytic degradation occurring outside the plasma compartment via an unidentified mechanism. Human CL and PK profiles for intact NT and CT of FGF21 were well predicted using monkey single-species allometric and Dedrick scaling. Physiologically based pharmacokinetic models incorporating serum stability data and an extravascular extraction term based on differential bioavailability of intact NT and CT of FGF21 in monkeys improved accuracy of human PK predictions relative to Dedrick scaling. Mechanistic physiologically based pharmacokinetic models of this nature may be highly valuable for predicting human PK of fusion proteins, synthetically conjugated proteins, and other complex biologics.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Drugs, Investigational/pharmacokinetics , Fibroblast Growth Factors/chemistry , Fibroblast Growth Factors/pharmacology , Hypoglycemic Agents/pharmacokinetics , Hypolipidemic Agents/pharmacokinetics , Immunoglobulin G/chemistry , Models, Biological , Recombinant Proteins/pharmacokinetics , Amino Acid Substitution , Animals , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/blood , Antibodies, Monoclonal, Humanized/chemistry , Drug Evaluation, Preclinical , Drugs, Investigational/administration & dosage , Drugs, Investigational/analysis , Drugs, Investigational/chemistry , Fibroblast Growth Factors/administration & dosage , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Half-Life , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/blood , Hypoglycemic Agents/chemistry , Hypolipidemic Agents/administration & dosage , Hypolipidemic Agents/blood , Hypolipidemic Agents/chemistry , Immunoglobulin G/blood , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Immunoglobulin kappa-Chains/blood , Immunoglobulin kappa-Chains/chemistry , Immunoglobulin kappa-Chains/genetics , Immunoglobulin kappa-Chains/metabolism , Injections, Intravenous , Injections, Subcutaneous , Macaca fascicularis , Male , Metabolic Clearance Rate , Mutant Proteins/administration & dosage , Mutant Proteins/blood , Mutant Proteins/chemistry , Mutant Proteins/pharmacokinetics , Peptide Fragments/blood , Proteolysis , Rats , Recombinant Proteins/administration & dosage , Recombinant Proteins/blood , Recombinant Proteins/chemistry
14.
Curr Drug Metab ; 14(7): 764-90, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23952252

ABSTRACT

The neonatal Fc receptor (FcRn) is a heterodimeric membrane associated protein expressed in a variety of endothelial, epithelial and hematopoietic cells. FcRn regulates pH dependent intracellular trafficking of immunoglobulin G (IgG) and albumin, resulting in enhanced serum persistence and transcellular permeability of these proteins compared to other proteins of similar size. FcRn confers passive immunity during the early stages of life by facilitating maternal transmission of antibodies during gestation, and in some species during the neonatal period. The receptor continues to contribute to immunity beyond the perinatal period and throughout life by providing immunosurveillance in intestinal, pulmonary and genitourinary mucosa. In this capacity, FcRn facilitates bidirectional transport of IgG across mucosa and intracellular trafficking of antigen-antibody complexes in antigen presenting cells. Based on the functional roles of FcRn in regulating serum persistence and transcellular permeability, protein engineers have sought to exploit this receptor as a means of enhancing the absorption, distribution, metabolism and excretion (ADME) of IgG-based therapeutics. In this review, the current state of knowledge regarding the structural, mechanistic and functional properties of FcRn, as they relate to the ADME of IgG-based therapeutics, are discussed.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Immunoglobulin G/pharmacology , Receptors, Fc/metabolism , Absorption , Animals , Histocompatibility Antigens Class I/chemistry , Humans , Immunoglobulin G/therapeutic use , Protein Conformation , Protein Transport , Receptors, Fc/chemistry , Tissue Distribution
15.
J Pharm Sci ; 99(8): 3620-7, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20229604

ABSTRACT

Species differences in microsomal binding were evaluated for 43 drug molecules in human, monkey, dog and rat liver microsomes, using a fixed concentration of microsomal protein. The dataset included 32 named drugs and 11 proprietary compounds encompassing a broad spectrum of physicochemical properties (11 acids, 24 bases, 8 neutral, c log D -1 to 7, MW 200 to 700 and free fraction <0.001 to 1). Free fractions (f(u,mic)) in monkey, dog, rat and human microsomes were highly correlated, with linear regression correlation coefficients greater than 0.97. The average fold-difference in f(u,mic) between monkey, dog, or rat, and human was 1.6-, 1.3-, and 1.5-fold, respectively. Species differences in f(u,mic) were also assessed for a range of microsomal protein concentrations (0.2-2 mg/mL) for midazolam, clomipramine, astemizole, and tamoxifen, drugs with low to high microsomal binding. The mean fold species-difference in f(u,mic) for midazolam, clomipramine, astemizole, and tamoxifen was 1.1-, 1.2-, 1.3-, and 2.0-fold, respectively, and was independent of normalized microsomal protein concentration. For a fixed concentration of microsomal protein, greater than 76% and 90% of drugs examined in this study had preclinical species f(u,mic) within 1.5- and 2-fold, respectively, of experimentally measured human values.


Subject(s)
Microsomes, Liver/metabolism , Algorithms , Animals , Chromatography, High Pressure Liquid , Dogs , Haplorhini , Humans , In Vitro Techniques , Indicators and Reagents , Kinetics , Pharmaceutical Preparations/metabolism , Phospholipids/chemistry , Proteins/chemistry , Rats , Species Specificity
17.
Drug Metab Lett ; 3(1): 45-53, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19356116

ABSTRACT

Enzyme kinetic parameters for midazolam were time-dependent in human liver microsomes, under initial velocity conditions. V(max) and K(m) decreased up to 3.7 and 3.1-fold, respectively, for 10 min compared to 1 min incubations. Mathematical models describing the relationship between inactivation and the time-dependency of enzyme kinetic parameter estimates were derived and discussed.


Subject(s)
Enzymes/metabolism , Hypnotics and Sedatives/pharmacokinetics , Midazolam/pharmacokinetics , Algorithms , Biotransformation , Chromatography, High Pressure Liquid , Computer Simulation , Data Interpretation, Statistical , Humans , In Vitro Techniques , Kinetics , Models, Statistical , Spectrometry, Mass, Electrospray Ionization
18.
Peptides ; 28(11): 2211-22, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17950490

ABSTRACT

A comparison of the conformational characteristics of the related hormones [Nle(15)] gastrin-17 and [Tyr(9)-SO(3)] cholecystokinin-15, in membrane-mimetic solutions of dodecylphosphocholine micelles and water, was undertaken using NMR spectroscopy to investigate the possibility of a structural motif responsible for the two hormones common ability to stimulate the CCK(2) receptor. Distance geometry calculations and NOE-restrained molecular dynamics simulations in biphasic solvent boxes of decane and water pointed to the two peptides adopting near identical helical C-terminal configurations, which extended one residue further than their shared pentapeptide sequence of Gly-Trp-Met-Asp-Phe-NH(2). The C-terminal conformation of [Nle(15)] gastrin-17 contained a short alpha-helix spanning the Ala(11)-Trp(14) sequence and an inverse gamma-turn centered on Nle(15) while that of [Tyr(9)-SO(3)] cholecystokinin-15 contained a short 3(10) helix spanning its Met(10) to Met(13) sequence and an inverse gamma-turn centered on Asp(14). Significantly, both the C-terminal helices were found to terminate in type I beta-turns spanning the homologous Gly-Trp-Met-Asp sequences. This finding supports the hypothesis that this structural motif is a necessary condition for CCK(2) receptor activation given that both gastrin and cholecystokinin have been established to follow a membrane-associated pathway to receptor recognition and activation. Comparison of the conformations for the non-homologous C-terminal tyrosyl residues of [Nle(15)] gastrin-17 and [Tyr(9)-SO(3)] cholecystokinin-15 found that they lie on opposite faces of the conserved C-terminal helices. The positioning of this tyrosyl residue is known to be essential for CCK(1) activity and non-essential for CCK(2) activity, pointing to it as a possible differentiator in CCK(1)/CCK(2) receptor selection. The different tyrosyl orientations were retained in molecular models for the [Nle(15)] gastrin-17/CCK(2) receptor and [Tyr(9)-SO(3)] cholecystokinin-15/CCK(1) receptor complexes, highlighting the role of this residue as a likely CCK(1)/CCK(2) receptor differentiator.


Subject(s)
Amino Acid Motifs , Gastrins/chemistry , Receptor, Cholecystokinin B/chemistry , Amino Acid Sequence , Cholecystokinin/chemistry , Cholecystokinin/metabolism , Gastrins/metabolism , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/chemistry , Phosphorylcholine/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Receptor, Cholecystokinin B/metabolism
19.
Biochemistry ; 43(10): 2724-31, 2004 Mar 16.
Article in English | MEDLINE | ID: mdl-15005607

ABSTRACT

The conformational features of a conjugate of the C-terminus of human gastrin (HG[11-17]), the shortest gastrin sequence retaining biological function, with beta-cyclodextrin ([Nle(15)]-HG[11-17]-betaCD) were determined by NMR spectroscopy in an aqueous solution of dodecylphosphocholine (DPC) micelles. The peptide-betaCD conjugate displays a binding affinity and activation profile comparable to those of HG[11-17] at the cholecysokinin 2 (CCK(2)) receptor, the G protein-coupled receptor responsible for the gastrointestinal function of gastrin. The structure of the peptide consisted of a well-defined beta-turn between Gly(13) and Asp(16) of gastrin. The structural preferences of [Nle(15)]-HG[11-17]-betaCD in DPC micelles and the 5-doxylstearate-induced relaxation of the (1)H NMR resonances support a membrane-associated receptor recognition mechanism. Addition of [Nle(15)]-HG[11-17]-betaCD to the third extracellular loop domain of the CCK(2) receptor, CCK(2)-R(352-379), generated a number of intermolecular nuclear Overhauser enhancements (NOEs) and chemical shift perturbations. NOE-restrained MD simulations of the [Nle(15)]-HG[11-17]-betaCD-CCK(2)-R complex produced a topological orientation in which the C-terminus was located in a shallow hydrophobic pocket near the confluence of TM2 and -3. Despite the steric bulk and physicochemical properties of betaCD, the [Nle(15)]-HG[11-17]-betaCD-CCK(2)-R complex is similar to the CCK-8-CCK(2)-R complex determined previously, providing insight into the mode of ligand binding and the role of electrostatic interactions.


Subject(s)
Cyclodextrins/chemistry , Extracellular Space/chemistry , Gastrins/chemistry , Models, Molecular , Receptor, Cholecystokinin B/chemistry , beta-Cyclodextrins , Amino Acid Sequence , Computer Simulation , Humans , Ligands , Macromolecular Substances , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Static Electricity , Thermodynamics
20.
J Med Chem ; 46(16): 3476-82, 2003 Jul 31.
Article in English | MEDLINE | ID: mdl-12877585

ABSTRACT

Intermolecular interactions were determined between a synthetic peptide corresponding to the third extracellular loop and several residues from the adjoining sixth and seventh transmembrane domains of the human cholecystokinin-1 receptor, CCK(1)-R(329-357), and the synthetic agonists Ace-Trp-Lys[NH(epsilon)CONH-o-(MePh)]-Asp-MePhe-NH(2) (GI5269) and the C1 N-isopropyl-N-(4-methoxyphenyl)acetamide derivative of 3-(1H-Indazol-3ylmethyl)-3-methyl-5-pyridin-3-yl-1,5-benzodiazepine (GI0122), using high-resolution nuclear magnetic resonance spectroscopy and computer simulations. Addition of the ligands to CCK(1)-R(329-357) in an aqueous solution of DPC micelles produced a number of intermolecular nuclear Overhauser enhancements (NOEs) to residues in TMs 6 and 7 of the receptor fragment. NOE-restrained molecular models of the GI5269 and GI0122/CCK(1)-R complexes provide evidence for overlapping ligand-binding sites for peptidic and nonpeptidic agonists. The proposed binding modes of GI5269 and GI0122 are supported by the structure-activity relationship of analogues and mutagenesis data for the CCK(1)-R selective antagonist L-364,718.


Subject(s)
Benzodiazepinones/chemistry , Oligopeptides/chemistry , Receptors, Cholecystokinin/agonists , Receptors, Cholecystokinin/chemistry , Binding Sites , Computer Simulation , Devazepide/chemistry , Humans , Isomerism , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Mutation , Peptide Fragments/chemistry , Receptor, Cholecystokinin A , Receptors, Cholecystokinin/antagonists & inhibitors , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...