Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 14: 1197212, 2023.
Article in English | MEDLINE | ID: mdl-37483447

ABSTRACT

With a rapidly aging global population and improvement of outcomes with newer multiple sclerosis (MS)-specific disease-modifying therapies (DMTs), the epidemiology of MS has shifted to an older than previously described population, with a peak prevalence of the disease seen in the 55-65 years age group. Changes in the pathophysiology of MS appear to be age-dependent. Several studies have identified a consistent phase of disability worsening around the fifth decade of life. The latter appears to be independent of prior disease duration and inflammatory activity and concomitant to pathological changes from acute focal active demyelination to chronic smoldering plaques, slow-expanding lesions, and compartmentalized inflammation within the central nervous system (CNS). On the other hand, decreased CNS tissue reserve and poorer remyelinating capacity with aging lead to loss of relapse recovery potential. Aging with MS may imply longer exposure to DMTs, although treatment efficacy in patients >55 years has not been evaluated in pivotal randomized controlled trials and appears to decrease with age. Older individuals are more prone to adverse effects of DMTs, an important aspect of treatment individualization. Aging with MS also implies a higher global burden of comorbid illnesses that contribute to overall impairments and represent a crucial confounder in interpreting clinical worsening. Discontinuation of DMTs after age 55, when no evidence of clinical or radiological activity is detected, is currently under the spotlight. In this review, we will discuss the impact of aging on MS pathobiology, the effect of comorbidities and other confounders on clinical worsening, and focus on current therapeutic considerations in this age group.

2.
Immunol Cell Biol ; 101(1): 65-77, 2023 01.
Article in English | MEDLINE | ID: mdl-36260372

ABSTRACT

Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been implicated in numerous chronic inflammatory diseases, including multiple sclerosis (MS). GM-CSF impacts multiple properties and functions of myeloid cells via species-specific mechanisms. Therefore, we assessed the effect of GM-CSF on different human myeloid cell populations found in MS lesions: monocyte-derived macrophages (MDMs) and microglia. We previously reported a greater number of interleukin (IL)-15+ myeloid cells in the brain of patients with MS than in controls. Therefore, we investigated whether GM-CSF exerts its deleterious effects in MS by increasing IL-15 expression on myeloid cells. We found that GM-CSF increased the proportion of IL-15+ cells and/or IL-15 levels on nonpolarized, M1-polarized and M2-polarized MDMs from healthy donors and patients with MS. GM-CSF also increased IL-15 levels on human adult microglia. When cocultured with GM-CSF-stimulated MDMs, activated autologous CD8+ T lymphocytes secreted and expressed significantly higher levels of effector molecules (e.g. interferon-γ and GM-CSF) compared with cocultures with unstimulated MDMs. However, neutralizing IL-15 did not attenuate enhanced effector molecule expression on CD8+ T lymphocytes triggered by GM-CSF-stimulated MDMs. We showed that GM-CSF stimulation of MDMs increased their expression of CD80 and ICAM-1 and their secretion of IL-6, IL-27 and tumor necrosis factor. These molecules could participate in boosting the effector properties of CD8+ T lymphocytes independently of IL-15. By contrast, GM-CSF did not alter CD80, IL-27, tumor necrosis factor and chemokine (C-X-C motif) ligand 10 expression/secretion by human microglia. Therefore, our results underline the distinct impact of GM-CSF on human myeloid cells abundantly present in MS lesions.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Interleukin-27 , Humans , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Interleukin-15 , Macrophages/metabolism , T-Lymphocytes/metabolism , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL
...