Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(31): 21222-21228, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39073103

ABSTRACT

Ionizing radiation induced transformations in materials were monitored through tracking of the generation and degradation processes of radical species. Consequently, the types and quantities of radicals were determined by electron spin resonance (ESR). Subsequently, differential scanning calorimetry (DSC) was utilized to assess the impact of irradiation on the material crystallinity. The effects of gamma rays, X-rays, and electron beams were investigated on different polyamides, which exhibit an ESR signal up to 60 days. DSC results showed no significant effect of irradiation on the melting peak temperature of the materials, indicating that the amount of radicals generated was not large enough to induce a significant alteration of the material's macrostructure.

2.
Polymers (Basel) ; 15(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37447445

ABSTRACT

X-ray and electron-beam (E-beam) sterilization technologies were assessed to supplement gamma sterilization, the most common radiation technology used today for biopharmaceutical product sterilization. The mechanical properties of a PE/EVOH/PE film were studied using tensile tests and dynamical mechanical analysis after each irradiation technology (i.e., gamma, electron beam and X-ray irradiations). The effects of each irradiation were compared using two statistical methods. The results indicate that the three irradiation technologies induce no difference in mechanical properties in the investigated dose range for this material.

3.
Front Chem ; 10: 888285, 2022.
Article in English | MEDLINE | ID: mdl-35646817

ABSTRACT

Gamma-ray irradiation, using the cobalt-60 isotope, is the most common radiation modality used for medical device and biopharmaceutical products sterilization. Although X-ray and electron-beam (e-beam) sterilization technologies are mature and have been in use for decades, impediments remain to switching to these sterilization modalities because of lack of data on the resulting radiation effects for the associated polymers, as well as a lack of education for manufacturers and regulators on the viability of these sterilization alternatives. For this study, the compatibility of ethylene vinyl acetate (EVA) multilayer films with different ionizing radiation sterilization (X-ray, e-beam, and gamma irradiation) is determined by measuring chemical and physical film properties using high performance liquid chromatography, differential scanning calorimetry, Fourier-Transform InfraRed spectroscopy (FTIR), surface energy measurement, and electron spin resonance techniques. The results indicate that the three irradiation modalities induce no differences in thermal properties in the investigated dose range. Gamma and X-Ray irradiations generate the same level of reactive species in the EVA multilayer film, whereas e-beam generates a reduced quantity of reactive species.

4.
Chem Commun (Camb) ; 57(84): 11049-11051, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34608899

ABSTRACT

To increase sterilization capacity, X-ray and e-beam irradiation modalities are more and more attractive for the indutrial sterilization of heathcare products (medical devices and biopharmaceutical goods). However, no study comparing these different techniques are available concerning multi-layer films. Thus, with the PE/EVOH/PE multilayer film as a model, we show that, whatever the modality of irradiation, the thermal properties are not significantly changed as shown by DSC, and, as such, the physical and mechanical properties of this material are also expected to behave similarly. On the other hand, chemical properties such as oxidation ability are strikingly modified, i.e., the same oxidation level for X-ray and γ-irradiation and twice weaker for e-beam irradiation.

5.
Polymers (Basel) ; 13(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34451206

ABSTRACT

Chemically and biologically safe storage of solutions for medical uses is a daily concern for industry since decades and it appeared even more dramatic during the last two years of pandemia. Biological safety is readily reached by sterilization using γ-irradiation process. However, such a type of irradiation induces the degradation and the release of chemicals able to spoil the biological solutions. Surprisingly, there are no investigations on multi-layer films combining multi-technique and multi-method approaches to unveil the events occurring during γ-irradiation. Furthermore, our investigations are focuses on properties/events occurring at product, macromolecular, and molecular levels.

6.
Polymers (Basel) ; 12(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348762

ABSTRACT

In this study, the oxidation of methionine is used as a proxy to model the gamma radiation-induced changes in single-use bags; these changes lead to the formation of acids, radicals, and hydroperoxides. The mechanisms of formation of these reactive species and of methionine oxidation are discussed. With the help of reaction kinetics, the optimal conditions for the use of these single-use bags minimizing the impact of radical chemistry are highlighted. Biopharmaceutical bags gamma irradiated from 0 kGy to 260 kGy and aged from 0 to 36 months were filled with a methionine solution to follow the oxidation of the methionine. The methionine sulfoxide was measured with HPLC after different storage times (0, 3, 10, 14, 17, and 21 days). Three main results were analyzed through a design of experiments: the oxidative induction time, the methionine sulfoxide formation rate, and the maximum methionine sulfoxide concentration detected. A key aspect of the study is that it highlights that methionine is oxidized not necessarily directly by hydro(gen) peroxide but throughperacid, and likely peracetic acid. The answers to the design of experiments were considered to obtain the desirability domain for the optimization of the conditions of use for the single-use bags limiting the oxidation of methionine as well as the release of reactive species thereof.

SELECTION OF CITATIONS
SEARCH DETAIL