Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 131(2)2021 01 19.
Article in English | MEDLINE | ID: mdl-33258804

ABSTRACT

The triggering receptor expressed on myeloid cells 1 (TREM-1) drives inflammatory responses in several cardiovascular diseases but its role in abdominal aortic aneurysm (AAA) remains unknown. Our objective was to explore the role of TREM-1 in a mouse model of angiotensin II-induced (AngII-induced) AAA. TREM-1 expression was detected in mouse aortic aneurysm and colocalized with macrophages. Trem1 gene deletion (Apoe-/-Trem1-/-), as well as TREM-1 pharmacological blockade with LR-12 peptide, limited both AAA development and severity. Trem1 gene deletion attenuated the inflammatory response in the aorta, with a reduction of Il1b, Tnfa, Mmp2, and Mmp9 mRNA expression, and led to a decreased macrophage content due to a reduction of Ly6Chi classical monocyte trafficking. Conversely, antibody-mediated TREM-1 stimulation exacerbated Ly6Chi monocyte aorta infiltration after AngII infusion through CD62L upregulation and promoted proinflammatory signature in the aorta, resulting in worsening AAA severity. AngII infusion stimulated TREM-1 expression and activation on Ly6Chi monocytes through AngII receptor type I (AT1R). In human AAA, TREM-1 was detected and TREM1 mRNA expression correlated with SELL mRNA expression. Finally, circulating levels of sTREM-1 were increased in patients with AAA when compared with patients without AAA. In conclusion, TREM-1 is involved in AAA pathophysiology and may represent a promising therapeutic target in humans.


Subject(s)
Angiotensin II/adverse effects , Aortic Aneurysm, Abdominal/metabolism , Cell Movement/drug effects , Monocytes/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Angiotensin II/pharmacology , Animals , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Cell Movement/genetics , Gene Deletion , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Mice , Mice, Knockout, ApoE , Monocytes/pathology , Triggering Receptor Expressed on Myeloid Cells-1/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
2.
J Cell Mol Med ; 24(10): 5731-5739, 2020 05.
Article in English | MEDLINE | ID: mdl-32285594

ABSTRACT

Adaptive immune responses regulate the development of atherosclerosis, with a detrimental effect of type 1 but a protective role of type 2 immune responses. Immunization of Apolipoprotein E-deficient (ApoE-/- ) mice with Freund's adjuvant inhibits the development of atherosclerosis. However, the underlying mechanisms are not fully understood. Thymic stromal lymphopoietin (TSLP) is an IL7-like cytokine with essential impact on type 2 immune responses (Th2). Thymic stromal lymphopoietin is strongly expressed in epithelial cells of the skin, but also in various immune cells following appropriate stimulation. In this study, we investigated whether TSLP may be crucial for the anti-atherogenic effect of Freund's adjuvant. Subcutaneous injection of complete Freund's adjuvant (CFA) rapidly led to the expression of TSLP and IL1ß at the site of injection. In male mice, CFA-induced TSLP occurred in immigrated monocytes-and not epithelial cells-and was dependent on NLRP3 inflammasome activation and IL1ß-signalling. In females, CFA-induced TSLP was independent of IL1ß and upon ovariectomy. CFA/OVA led to a more pronounced imbalance of the T cell response in TSLPR-/- mice, with increased INFγ/IL4 ratio compared with wild-type controls. To test whether TSLP contributes to the anti-atherogenic effects of Freund's adjuvant, we treated ApoE-/- and ApoE-/- /TSLPR-/- mice with either CFA/IFA or PBS. ApoE-/- mice showed less atherogenesis upon CFA/IFA compared with PBS injections. ApoE-/- /TSLPR-/- mice had no attenuation of atherogenesis upon CFA/IFA treatment. Freund's adjuvant executes significant immune-modulating effects via TSLP induction. TSLP-TSLPR signalling is critical for CFA/IFA-mediated attenuation of atherosclerosis.


Subject(s)
Atherosclerosis/etiology , Atherosclerosis/metabolism , Cytokines/metabolism , Immunomodulation , Animals , Cytokines/genetics , Disease Susceptibility , Female , Freund's Adjuvant/immunology , Gene Expression , Immunity , Immunoglobulins/genetics , Immunoglobulins/metabolism , Interleukin-1beta/metabolism , Male , Mice , Mice, Knockout , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , Signal Transduction , Skin/metabolism , Thymic Stromal Lymphopoietin
3.
Arterioscler Thromb Vasc Biol ; 38(1): 114-119, 2018 01.
Article in English | MEDLINE | ID: mdl-29191921

ABSTRACT

OBJECTIVE: To determine the consequences of specific inhibition of EGFR (epidermal growth factor receptor) in myeloid cells in atherosclerosis development. APPROACH AND RESULTS: Atherosclerotic lesion size was significantly reduced in irradiated Ldlr-/- mice reconstituted with LysMCre+Egfrlox/lox bone marrow, compared with chimeric Ldlr-/- mice reconstituted with LysMCre-Egfrlox/lox bone marrow, after 4 (-43%; P<0.05), 7 (-34%; P<0.05), and 12 weeks (-54%; P<0.001) of high-fat diet. Reduction of lesion size was associated with marked reduction in macrophage accumulation and necrotic core size. Specific deletion of Egfr in myeloid cells reduced TNF-α (tumor necrosis factor-α) and IL (interleukin)-6 production by stimulated macrophages but had no effect on IL-10 and IL-12p70 secretion. Finally, we found that myeloid deletion of Egfr limited cytoskeletal rearrangements and also lipid uptake by macrophages through a downregulation of the scavenger receptor CD36 (cluster of differentiation 36). CONCLUSIONS: Gene deletion of Egfr in myeloid cells limits IL-6 and TNF-α production, lipid uptake, and consecutively reduces atherosclerosis development.


Subject(s)
Atherosclerosis/prevention & control , ErbB Receptors/deficiency , Gene Deletion , Macrophages/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Bone Marrow Transplantation , CD36 Antigens/metabolism , Cytoskeleton/metabolism , Cytoskeleton/pathology , Diet, High-Fat , Disease Models, Animal , ErbB Receptors/genetics , Interleukin-6/metabolism , Macrophages/pathology , Macrophages/transplantation , Male , Mice, Knockout , Necrosis , Plaque, Atherosclerotic , Receptors, LDL/deficiency , Receptors, LDL/genetics , Tumor Necrosis Factor-alpha/metabolism , Whole-Body Irradiation
4.
Circ Res ; 122(1): 47-57, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29046274

ABSTRACT

RATIONALE: Chronic inflammation is central in the development of atherosclerosis. Both innate and adaptive immunities are involved. Although several studies have evaluated the functions of natural killer (NK) cells in experimental animal models of atherosclerosis, it is not yet clear whether NK cells behave as protective or proatherogenic effectors. One of the main caveats of previous studies was the lack of specificity in targeting loss or gain of function of NK cells. OBJECTIVES: We used 2 selective genetic approaches to investigate the role of NK cells in atherosclerosis: (1) Ncr1iCre/+R26lsl-DTA/+ mice in which NK cells were depleted and (2) Noé mice in which NK cells are hyperresponsive. METHODS AND RESULTS: No difference in atherosclerotic lesion size was found in Ldlr-/- (low-density lipoprotein receptor null) mice transplanted with bone marrow (BM) cells from Ncr1iCreR26Rlsl-DTA , Noé, or wild-type mice. Also, no difference was observed in plaque composition in terms of collagen content, macrophage infiltration, or the immune profile, although Noé chimera had more IFN (interferon)-γ-producing NK cells, compared with wild-type mice. Then, we investigated the NK-cell selectivity of anti-asialoganglioside M1 antiserum, which was previously used to conclude the proatherogenicity of NK cells. Anti-asialoganglioside M1 treatment decreased atherosclerosis in both Ldlr-/- mice transplanted with Ncr1iCreR26Rlsl-DTA or wild-type bone marrow, indicating that its antiatherogenic effects are unrelated to NK-cell depletion, but to CD8+ T and NKT cells. Finally, to determine whether NK cells could contribute to the disease in conditions of pathological NK-cell overactivation, we treated irradiated Ldlr-/- mice reconstituted with either wild-type or Ncr1iCreR26Rlsl-DTA bone marrow with the viral mimic polyinosinic:polycytidylic acid and found a significant reduction of plaque size in NK-cell-deficient chimeric mice. CONCLUSIONS: Our findings, using state-of-the-art mouse models, demonstrate that NK cells have no direct effect on the natural development of hypercholesterolemia-induced atherosclerosis, but may play a role when an additional systemic NK-cell overactivation occurs.


Subject(s)
Atherosclerosis/genetics , Atherosclerosis/metabolism , Gene Deletion , Killer Cells, Natural/metabolism , Animals , Atherosclerosis/immunology , Cells, Cultured , Killer Cells, Natural/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
5.
Circ Res ; 121(3): 234-243, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28607102

ABSTRACT

RATIONALE: Necrotic core formation during the development of atherosclerosis is associated with a chronic inflammatory response and promotes accelerated plaque development and instability. However, the molecular links between necrosis and the development of atherosclerosis are not completely understood. Clec9a (C-type lectin receptor) or DNGR-1 (dendritic cell NK lectin group receptor-1) is preferentially expressed by the CD8α+ subset of dendritic cells (CD8α+ DCs) and is involved in sensing necrotic cells. We hypothesized that sensing of necrotic cells by DNGR-1 plays a determinant role in the inflammatory response of atherosclerosis. OBJECTIVE: We sought to address the impact of total, bone marrow-restricted, or CD8α+ DC-restricted deletion of DNGR-1 on atherosclerosis development. METHODS AND RESULTS: We show that total absence of DNGR-1 in Apoe (apolipoprotein e)-deficient mice (Apoe-/-) and bone marrow-restricted deletion of DNGR-1 in Ldlr (low-density lipoprotein receptor)-deficient mice (Ldlr-/-) significantly reduce inflammatory cell content within arterial plaques and limit atherosclerosis development in a context of moderate hypercholesterolemia. This is associated with a significant increase of the expression of interleukin-10 (IL-10). The atheroprotective effect of DNGR-1 deletion is completely abrogated in the absence of bone marrow-derived IL-10. Furthermore, a specific deletion of DNGR-1 in CD8α+ DCs significantly increases IL-10 expression, reduces macrophage and T-cell contents within the lesions, and limits the development of atherosclerosis. CONCLUSIONS: Our results unravel a new role of DNGR-1 in regulating vascular inflammation and atherosclerosis and potentially identify a new target for disease modulation.


Subject(s)
Atherosclerosis/metabolism , Atherosclerosis/pathology , Dendritic Cells/metabolism , Dendritic Cells/pathology , Interleukin-10/biosynthesis , Lectins, C-Type/deficiency , Receptors, Immunologic/deficiency , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
6.
Sci Rep ; 7(1): 4111, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28646220

ABSTRACT

Angiotensin II (AngII) promotes hypertension, atherogenesis, vascular aneurysm and impairs post-ischemic cardiac remodeling through concerted roles on vascular cells, monocytes and T lymphocytes. However, the role of AngII in B lymphocyte responses is largely unexplored. Here, we show that chronic B cell depletion (Baffr deficiency) significantly reduces atherosclerosis in Apoe -/- mice infused with AngII. While adoptive transfer of B cells in Apoe -/- /Baffr -/- mice reversed atheroprotection in the absence of AngII, infusion of AngII in B cell replenished Apoe -/- /Baffr -/- mice unexpectedly prevented the progression of atherosclerosis. Atheroprotection observed in these mice was associated with a significant increase in regulatory CD1dhiCD5+ B cells, which produced high levels of interleukin (IL)-10 (B10 cells). Replenishment of Apoe -/- /Baffr -/- mice with Il10 -/- B cells reversed AngII-induced B cell-dependent atheroprotection, thus highlighting a protective role of IL-10+ regulatory B cells in this setting. Transfer of AngII type 1A receptor deficient (Agtr1a -/-) B cells into Apoe -/- /Baffr -/- mice substantially reduced the production of IL-10 by B cells and prevented the AngII-dependent atheroprotective B cell phenotype. Consistent with the in vivo data, AngII synergized with BAFF to induce IL-10 production by B cells in vitro via AngII type 1A receptor. Our data demonstrate a previously unknown synergy between AngII and BAFF in inducing IL-10 production by B cells, resulting in atheroprotection.


Subject(s)
Angiotensin II/metabolism , Atherosclerosis/etiology , Atherosclerosis/metabolism , B-Cell Activating Factor/genetics , B-Lymphocytes, Regulatory/metabolism , Animals , Atherosclerosis/pathology , B-Lymphocytes, Regulatory/immunology , Biomarkers , Cells, Cultured , Disease Models, Animal , Immunohistochemistry , Interleukin-10/biosynthesis , Mice , Mice, Knockout , Phenotype , Receptor, Angiotensin, Type 1/deficiency
7.
Cardiovasc Res ; 113(11): 1364-1375, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28582477

ABSTRACT

AIMS: Abdominal aortic aneurysm (AAA), frequently diagnosed in old patients, is characterized by chronic inflammation, vascular cell apoptosis and metalloproteinase-mediated extracellular matrix destruction. Despite improvement in the understanding of the pathophysiology of aortic aneurysm, no pharmacological treatment is yet available to limit dilatation and/or rupture. We previously reported that human gingival fibroblasts (GFs) can reduce carotid artery dilatation in a rabbit model of elastase-induced aneurysm. Here, we sought to investigate the mechanisms of GF-mediated vascular protection in two different models of aortic aneurysm growth and rupture in mice. METHODS AND RESULTS: In vitro, mouse GFs proliferated and produced large amounts of anti-inflammatory cytokines and tissue inhibitor of metalloproteinase-1 (Timp-1). GFs deposited on the adventitia of abdominal aorta survived, proliferated, and organized as a layer structure. Furthermore, GFs locally produced Il-10, TGF-ß, and Timp-1. In a mouse elastase-induced AAA model, GFs prevented both macrophage and lymphocyte accumulations, matrix degradation, and aneurysm growth. In an Angiotensin II/anti-TGF-ß model of aneurysm rupture, GF cell-based treatment limited the extent of aortic dissection, prevented abdominal aortic rupture, and increased survival. Specific deletion of Timp-1 in GFs abolished the beneficial effect of cell therapy in both AAA mouse models. CONCLUSIONS: GF cell-based therapy is a promising approach to inhibit aneurysm progression and rupture through local production of Timp-1.


Subject(s)
Aortic Aneurysm, Abdominal/metabolism , Aortic Rupture/metabolism , Fibroblasts/metabolism , Gingiva/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Angiotensin II/pharmacology , Animals , Aorta, Abdominal/metabolism , Disease Models, Animal , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Mice, Inbred C57BL , Mice, Knockout , Protective Agents/pharmacology , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...