Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 51(6): 2877-2890, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36840715

ABSTRACT

mRNA sits at the crossroads of transcription, translation and mRNA degradation. Many questions remain about the coupling of these three processes in Escherichia coli and, in particular, how translation may have an effect on mRNA degradation and transcription. To characterize the interplay between mRNA degradation and translation while accounting for transcription, we altered the translation initiation or elongation and measured the effects on mRNA stability and concentration. Using a mapping method, we analysed mRNA concentration and stability at the local scale all along the transcript. We showed that a decrease in translation initiation efficiency destabilizes the mRNA and leads to a uniform decrease in mRNA concentration throughout the molecule. Prematurely terminating translation elongation by inserting a stop codon is associated with a drop in local mRNA concentration downstream of the stop codon, due to the uncoupling of transcription and translation. In contrast, this translation alteration uniformly destabilizes the coding and ribosome-free regions, in a process triggered by RNase E activity, and its ability to form the RNA degradome. These results demonstrate how ribosomes protect mRNA molecules and highlight how translation, mRNA degradation and transcription are deeply interconnected in the quality control process that avoids unproductive gene expression in cells.


Subject(s)
Escherichia coli , Peptide Chain Elongation, Translational , Protein Biosynthesis , Codon, Terminator/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
PLoS Biol ; 21(1): e3001942, 2023 01.
Article in English | MEDLINE | ID: mdl-36603027

ABSTRACT

RNA processing and degradation shape the transcriptome by generating stable molecules that are necessary for translation (rRNA and tRNA) and by facilitating the turnover of mRNA, which is necessary for the posttranscriptional control of gene expression. In bacteria and the plant chloroplast, RNA degradosomes are multienzyme complexes that process and degrade RNA. In many bacterial species, the endoribonuclease RNase E is the central component of the RNA degradosome. RNase E-based RNA degradosomes are inner membrane proteins in a large family of gram-negative bacteria (ß- and γ-Proteobacteria). Until now, the reason for membrane localization was not understood. Here, we show that a mutant strain of Escherichia coli, in which the RNA degradosome is localized to the interior of the cell, has high levels of 20S and 40S particles that are defective intermediates in ribosome assembly. These particles have aberrant protein composition and contain rRNA precursors that have been cleaved by RNase E. After RNase E cleavage, rRNA fragments are degraded to nucleotides by exoribonucleases. In vitro, rRNA in intact ribosomes is resistant to RNase E cleavage, whereas protein-free rRNA is readily degraded. We conclude that RNA degradosomes in the nucleoid of the mutant strain interfere with cotranscriptional ribosome assembly. We propose that membrane-attached RNA degradosomes in wild-type cells control the quality of ribosome assembly after intermediates are released from the nucleoid. That is, the compact structure of mature ribosomes protects rRNA against cleavage by RNase E. Turnover of a proportion of intermediates in ribosome assembly explains slow growth of the mutant strain. Competition between mRNA and rRNA degradation could be the cause of slower mRNA degradation in the mutant strain. We conclude that attachment of the RNA degradosome to the bacterial inner cytoplasmic membrane prevents wasteful degradation of rRNA precursors, thus explaining the reason for conservation of membrane-attached RNA degradosomes throughout the ß- and γ-Proteobacteria.


Subject(s)
Escherichia coli Proteins , RNA, Ribosomal , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Ribosomes/metabolism , Multienzyme Complexes/metabolism , RNA/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Cell Membrane/metabolism , Bacteria/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Bacterial/genetics
3.
Nat Commun ; 13(1): 4691, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35948538

ABSTRACT

Clostridium acetobutylicum is a promising biocatalyst for the renewable production of n-butanol. Several metabolic strategies have already been developed to increase butanol yields, most often based on carbon pathway redirection. However, it has previously demonstrated that the activities of both ferredoxin-NADP+ reductase and ferredoxin-NAD+ reductase, whose encoding genes remain unknown, are necessary to produce the NADPH and the extra NADH needed for butanol synthesis under solventogenic conditions. Here, we purify, identify and partially characterize the proteins responsible for both activities and demonstrate the involvement of the identified enzymes in butanol synthesis through a reverse genetic approach. We further demonstrate the yield of butanol formation is limited by the level of expression of CA_C0764, the ferredoxin-NADP+ reductase encoding gene and the bcd operon, encoding a ferredoxin-NAD+ reductase. The integration of these enzymes into metabolic engineering strategies introduces opportunities for developing a homobutanologenic C. acetobutylicum strain.


Subject(s)
Clostridium acetobutylicum , Butanols/metabolism , Clostridium/metabolism , Clostridium acetobutylicum/genetics , Clostridium acetobutylicum/metabolism , Electrons , Fermentation , Ferredoxin-NADP Reductase/metabolism , Ferredoxins/metabolism , NAD/metabolism , NADP/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism
4.
Microbiol Spectr ; 10(1): e0204121, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35138139

ABSTRACT

Translational regulation was investigated at the genome-scale in Escherichia coli cells. Using the polysome profiling method, the ribosome occupancy (RO) and ribosome density (RD) of different mRNA copies were determined for several hundred mRNAs during the exponential- and stationary-phases, providing the most complete characterization of such regulation in E. coli. Although for most genes, nearly all mRNAs (>90%) were undergoing translation, they were loaded with far fewer than the theoretical maximum number of ribosomes, suggesting translation limitation at the initiation step. Multiple linear regression was used to identify key intrinsic factors involved in the genome-wide regulation of RO and RD (i.e., open reading frame GC%, protein function, and localization). Unexpectedly, mRNA concentration, a factor that depends on cell physiology, was predicted to positively regulate RO and RD during the exponential- and stationary-phases. Using a set of selected genes controlled by an inducible promoter, we confirmed that increasing the mRNA concentration upon transcription induction led to increases in both RO and ribosome load. The fact that this relationship between mRNA concentration and translation parameters was also effective when E. coli cells naturally adapted to carbon source changes demonstrates its physiological relevance. This work demonstrated that translation regulation is positively controlled by transcript availability. This new mechanism contributed to the codirectional regulation of transcription and translation with synergistic effects on gene expression and provided a systemic understanding of E. coli cell function. IMPORTANCE The process of gene expression is divided into translation and transcription. Considerable efforts have been made in bacteria to characterize the mechanisms underlying translational regulation and identify the regulatory factors for particular mRNAs. However, to understand bacterial physiology and adaptation, it is important to elucidate genome-wide translational regulation and examine its coordination with transcriptional regulation. Here, we provided a genome-wide picture of translational regulation in Escherichia coli. For most genes, nearly all mRNA copies were found to undergo translation but were loaded with a low number of ribosomes. We showed that mRNA concentration had a positive effect on translation regulation, linking translational regulation to transcriptional regulation as well as to cell physiology and growth conditions. The codirectional regulation of transcription and translation had synergistic effects on gene expression, contributing to E. coli cell function optimization. This finding could be used in biotechnology to optimize strategies for recombinant protein synthesis.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , RNA, Messenger/metabolism , Carbon/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Genome, Bacterial , Open Reading Frames , Polyribosomes , Protein Biosynthesis , Ribosomes , Transcriptome
5.
Biotechnol Adv ; 54: 107805, 2022.
Article in English | MEDLINE | ID: mdl-34302931

ABSTRACT

Metabolic engineering strategies are crucial for the development of bacterial cell factories with improved performance. Until now, optimal metabolic networks have been designed based on systems biology approaches integrating large-scale data on the steady-state concentrations of mRNA, protein and metabolites, sometimes with dynamic data on fluxes, but rarely with any information on mRNA degradation. In this review, we compile growing evidence that mRNA degradation is a key regulatory level in E. coli that metabolic engineering strategies should take into account. We first discuss how mRNA degradation interacts with transcription and translation, two other gene expression processes, to balance transcription regulation and remove poorly translated mRNAs. The many reciprocal interactions between mRNA degradation and metabolism are also highlighted: metabolic activity can be controlled by changes in mRNA degradation and in return, the activity of the mRNA degradation machinery is controlled by metabolic factors. The mathematical models of the crosstalk between mRNA degradation dynamics and other cellular processes are presented and discussed with a view towards novel mRNA degradation-based metabolic engineering strategies. We show finally that mRNA degradation-based strategies have already successfully been applied to improve heterologous protein synthesis. Overall, this review underlines how important mRNA degradation is in regulating E. coli metabolism and identifies mRNA degradation as a key target for innovative metabolic engineering strategies in biotechnology.


Subject(s)
Escherichia coli , Metabolic Engineering , Escherichia coli/genetics , Metabolic Networks and Pathways , RNA Stability , Systems Biology
6.
Front Microbiol ; 13: 1088941, 2022.
Article in English | MEDLINE | ID: mdl-36620028

ABSTRACT

A set of 41 synthetic 5'UTRs with different theoretical translation initiation rates were generated to explore the role of 5'UTRs in the regulation of protein levels in Escherichia coli. The roles of the synthetic 5'UTRs in regulating the expression of different reporter genes were analyzed in vivo. Protein levels varied substantially between the different constructs but for most of the 5'UTRs, protein levels were not correlated with theoretical translation initiation rates. Large variations in mRNA concentrations were measured with the different 5'UTRs even though the same concentration of transcription inducer was used in each case. 5'UTRs were also found to strongly affect mRNA stability, and these changes in mRNA stability often contributed to observed differences in mRNA concentration. Unexpectedly, the effect of the 5'UTRs on mRNA half-lives was found to vary depending on the downstream reporter gene. These results clearly demonstrate that 5'UTRs contribute to gene expression regulation at the level of translation initiation and of mRNA stability, to an extent that depends on the nature of the downstream gene.

7.
mSphere ; 5(3)2020 05 20.
Article in English | MEDLINE | ID: mdl-32434841

ABSTRACT

Bacteria have to continuously adjust to nutrient fluctuations from favorable to less-favorable conditions and in response to carbon starvation. The glucose-acetate transition followed by carbon starvation is representative of such carbon fluctuations observed in Escherichia coli in many environments. Regulation of gene expression through fine-tuning of mRNA pools constitutes one of the regulation levels required for such a metabolic adaptation. It results from both mRNA transcription and degradation controls. However, the contribution of transcript stability regulation in gene expression is poorly characterized. Using combined transcriptome and mRNA decay analyses, we investigated (i) how transcript stability changes in E. coli during the glucose-acetate-starvation transition and (ii) if these changes contribute to gene expression changes. Our work highlights that transcript stability increases with carbon depletion. Most of the stabilization occurs at the glucose-acetate transition when glucose is exhausted, and then stabilized mRNAs remain stable during acetate consumption and carbon starvation. Meanwhile, expression of most genes is downregulated and we observed three times less gene expression upregulation. Using control analysis theory on 375 genes, we show that most of gene expression regulation is driven by changes in transcription. Although mRNA stabilization is not the controlling phenomenon, it contributes to the emphasis or attenuation of transcriptional regulation. Moreover, upregulation of 18 genes (33% of our studied upregulated set) is governed mainly by transcript stabilization. Because these genes are associated with responses to nutrient changes and stress, this underscores a potentially important role of posttranscriptional regulation in bacterial responses to nutrient starvation.IMPORTANCE The ability to rapidly respond to changing nutrients is crucial for E. coli to survive in many environments, including the gut. Reorganization of gene expression is the first step used by bacteria to adjust their metabolism accordingly. It involves fine-tuning of both transcription (transcriptional regulation) and mRNA stability (posttranscriptional regulation). While the forms of transcriptional regulation have been extensively studied, the role of mRNA stability during a metabolic switch is poorly understood. Investigating E. coli genomewide transcriptome and mRNA stability during metabolic transitions representative of the carbon source fluctuations in many environments, we have documented the role of mRNA stability in the response to nutrient changes. mRNAs are globally stabilized during carbon depletion. For a few genes, this leads directly to expression upregulation. As these genes are regulators of stress responses and metabolism, our work sheds new light on the likely importance of posttranscriptional regulations in response to environmental stress.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/genetics , Genome, Bacterial , RNA Stability , Stress, Physiological , Adaptation, Physiological , Bacterial Proteins/genetics , Carbon/metabolism , Down-Regulation , Escherichia coli/metabolism , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Glucose/metabolism , RNA, Messenger , Transcription, Genetic , Up-Regulation
8.
Mol Microbiol ; 111(6): 1715-1731, 2019 06.
Article in English | MEDLINE | ID: mdl-30903628

ABSTRACT

The reason for RNase E attachment to the inner membrane is largely unknown. To understand the cell biology of RNA degradation, we have characterized a strain expressing RNase E lacking the membrane attachment site (cytoplasmic RNase E). Genome-wide data show a global slowdown in mRNA degradation. There is no correlation between mRNA stabilization and the function or cellular location of encoded proteins. The activity of cRNase E is comparable to the wild-type enzyme in vitro, but the mutant protein is unstable in vivo. Autoregulation of cRNase E synthesis compensates for protein instability. cRNase E associates with other proteins to assemble a cytoplasmic RNA degradosome. CsrB/C sRNAs, whose stability is regulated by membrane-associated CsrD, are stabilized. Membrane attachment of RNase E is thus necessary for CsrB/C turnover. In contrast to mRNA stability, ribosome-free transcripts are sensitive to inactivation by cRNase E. Our results show that effects on RNA degradation are not due to the differences in the activity or level of cRNase E, or failure to assemble the RNA degradosome. We propose that membrane attachment is necessary for RNase E stability, functional interactions with membrane-associated regulatory factors and protection of ribosome-free transcripts from premature interactions with RNase E in the nucleoid.


Subject(s)
Endoribonucleases/metabolism , Escherichia coli/genetics , Multienzyme Complexes/metabolism , Polyribonucleotide Nucleotidyltransferase/metabolism , RNA Helicases/metabolism , RNA Stability , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Proteolysis , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , Ribosomes/genetics
9.
PLoS One ; 14(2): e0212297, 2019.
Article in English | MEDLINE | ID: mdl-30779773

ABSTRACT

Polysome profiling is a widely used method to monitor the translation status of mRNAs. Although it is theoretically a simple technique, it is labor intensive. Repetitive polysome fractionation rapidly generates a large number of samples to be handled in the downstream processes of protein elimination, RNA extraction and quantification. Here, we propose a multiplex polysome profiling experiment in which distinct cellular extracts are pooled before loading on the sucrose gradient for fractionation. We used the multiplexing method to study translation in E. coli. Multiplexing polysome profiling experiments provided similar mRNA translation status to that obtained with the non-multiplex method with comparable distribution of mRNA copies between the polysome profiling fractions, similar ribosome occupancy and ribosome density. The multiplexing method was used for parallel characterization of gene translational responses to changing mRNA levels. When the mRNA level of two native genes, cysZ and lacZ was increased by transcription induction, their global translational response was similar, with a higher ribosome load leading to increased ribosome occupancy and ribosome densities. However the pattern and the magnitude of the translational response were gene specific. By reducing the number of polysome profiling experiments, the multiplexing method saved time and effort and reduced cost and technical bias. This method would be useful to study the translational effect of mRNA sequence-dependent parameters that often require testing multiple samples and conditions in parallel.


Subject(s)
Escherichia coli/genetics , Polyribosomes/genetics , RNA, Messenger/metabolism , 3' Untranslated Regions , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , Polyribosomes/metabolism , Protein Biosynthesis , RNA, Messenger/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods
10.
Methods Enzymol ; 612: 47-66, 2018.
Article in English | MEDLINE | ID: mdl-30502954

ABSTRACT

In this study, we compared different computational methods used for genome-wide determination of mRNA half-lives in Escherichia coli with a special focus on the impact on considering a delay before the onset of mRNA decay after transcription arrest. A wide variety of datasets were analyzed coming from different technical methods for mRNA quantification (microarrays, RNA-seq, and RT-qPCR) and different bacterial growth conditions. The exponential decay of mRNA levels was fitted using both linear and exponential models and with or without a delay. We showed that for all the models, independently of mRNA quantification methods and growth conditions, ignoring the delay resulted in only a modest overestimation of the half-life. For approximately 80% of the mRNAs, differences in mRNA half-life values were less than 34s. The correlation between half-lives estimated with and without a delay was extremely high. However, the slope of the linear regression between the half-lives with and without a delay tended to decrease with the delay. For the few mRNAs for which taking into account the delay influenced the estimated half-life, the impact was dependent on the model and the growth condition. The smallest impact was obtained for the linear model.


Subject(s)
Escherichia coli/genetics , RNA Stability/physiology , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , RNA Stability/genetics , Transcription, Genetic/genetics
11.
BMC Genomics ; 19(1): 848, 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30486791

ABSTRACT

BACKGROUND: Exoribonucleases are crucial for RNA degradation in Escherichia coli but the roles of RNase R and PNPase and their potential overlap in stationary phase are not well characterized. Here, we used a genome-wide approach to determine how RNase R and PNPase affect the mRNA half-lives in the stationary phase. The genome-wide mRNA half-lives were determined by a dynamic analysis of transcriptomes after transcription arrest. We have combined the analysis of mRNA half-lives with the steady-state concentrations (transcriptome) to provide an integrated overview of the in vivo activity of these exoribonucleases at the genome-scale. RESULTS: The values of mRNA half-lives demonstrated that the mRNAs are very stable in the stationary phase and that the deletion of RNase R or PNPase caused only a limited mRNA stabilization. Intriguingly the absence of PNPase provoked also the destabilization of many mRNAs. These changes in mRNA half-lives in the PNPase deletion strain were associated with a massive reorganization of mRNA levels and also variation in several ncRNA concentrations. Finally, the in vivo activity of the degradation machinery was found frequently saturated by mRNAs in the PNPase mutant unlike in the RNase R mutant, suggesting that the degradation activity is limited by the deletion of PNPase but not by the deletion of RNase R. CONCLUSIONS: This work had identified PNPase as a central player associated with mRNA degradation in stationary phase.


Subject(s)
Escherichia coli/cytology , Escherichia coli/enzymology , Exoribonucleases/metabolism , RNA Stability , Genome, Bacterial , Half-Life , Mutation/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Transcriptome/genetics
12.
Biochim Biophys Acta Bioenerg ; 1859(2): 69-77, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28842179

ABSTRACT

The role of accessory Fe-S clusters of the F-domain in the catalytic activity of M3-type [FeFe] hydrogenase and the contribution of each of the two Fe-S surface clusters in the intermolecular electron transfer from ferredoxin are both poorly understood. We designed, constructed, produced and spectroscopically, electrochemically and biochemically characterized three mutants of Clostridium acetobutylicum CaHydA hydrogenase with modified Fe-S clusters: two site-directed mutants, HydA_C100A and HydA_C48A missing the FS4C and the FS2 surface Fe-S clusters, respectively, and a HydA_ΔDA mutant that completely lacks the F-domain. Analysis of the mutant enzyme activities clearly demonstrated the importance of accessory clusters in retaining full enzyme activity at potentials around and higher than the equilibrium 2H+/H2 potential but not at the lowest potentials, where all enzymes have a similar turnover rate. Moreover, our results, combined with molecular modelling approaches, indicated that the FS2 cluster is the main gate for electron transfer from reduced ferredoxin.


Subject(s)
Clostridium acetobutylicum/enzymology , Hydrogenase/chemistry , Amino Acid Substitution , Bacterial Proteins , Clostridium acetobutylicum/genetics , Hydrogenase/genetics , Mutation, Missense , Protein Domains
13.
Nucleic Acids Res ; 45(20): 11711-11724, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-28977619

ABSTRACT

Changing mRNA stability is a major post-transcriptional way of controlling gene expression, particularly in newly encountered conditions. As the concentration of mRNA is the result of an equilibrium between transcription and degradation, it is generally assumed that at constant transcription, any change in mRNA concentration is the consequence of mRNA stabilization or destabilization. However, the literature reports many cases of opposite variations in mRNA concentration and stability in bacteria. Here, we analyzed the causal link between the concentration and stability of mRNA in two phylogenetically distant bacteria Escherichia coli and Lactococcus lactis. Using reporter mRNAs, we showed that modifying the stability of an mRNA had unpredictable effects, either higher or lower, on its concentration, whereas increasing its concentration systematically reduced stability. This inverse relationship between the concentration and stability of mRNA was generalized to native genes at the genome scale in both bacteria. Higher mRNA turnover in the case of higher concentrations appears to be a simple physical mechanism to regulate gene expression in the bacterial kingdom. The consequences for bacterial adaptation of this control of the stability of an mRNA by its concentration are discussed.


Subject(s)
Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Lactococcus lactis/genetics , RNA Stability , RNA, Messenger/genetics , Base Sequence , Genome, Bacterial/genetics , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , Species Specificity
14.
Sci Rep ; 6: 25057, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27112822

ABSTRACT

Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Membrane Proteins/metabolism , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , Repressor Proteins/metabolism , Carbon/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Gene Expression , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genome, Bacterial , Membrane Proteins/genetics , RNA Stability , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA-Binding Proteins/genetics , Repressor Proteins/genetics , Transcription, Genetic
15.
PLoS One ; 10(12): e0145748, 2015.
Article in English | MEDLINE | ID: mdl-26696268

ABSTRACT

For a better understanding of the systemic effect of sub-lethal micromolar concentrations of ionic silver on Escherichia coli, we performed a multi-level characterization of cells under Ag+-mediated stress using an integrative biology approach combining physiological, biochemical and transcriptomic data. Physiological parameters, namely bacterial growth and survival after Ag+ exposure, were first quantified and related to the accumulation of intracellular silver, probed for the first time by nano secondary ion mass spectroscopy at sub-micrometer lateral resolution. Modifications in E. coli biochemical composition were evaluated under Ag+-mediated stress by in situ synchrotron Fourier-transform infrared microspectroscopy and a comprehensive transcriptome response was also determined. Using multivariate statistics, correlations between the physiological parameters, the extracellular concentration of AgNO3 and the intracellular silver content, gene expression profiles and micro-spectroscopic data were investigated. We identified Ag+-dependent regulation of gene expression required for growth (e.g. transporter genes, transcriptional regulators, ribosomal proteins), for ionic silver transport and detoxification (e.g. copA, cueO, mgtA, nhaR) and for coping with various types of stress (dnaK, pspA, metA,R, oxidoreductase genes). The silver-induced shortening of the acyl chain of fatty acids, mostly encountered in cell membrane, was highlighted by microspectroscopy and correlated with the down-regulated expression of genes involved in fatty acid transport (fadL) and synthesis/modification of lipid A (lpxA and arnA). The increase in the disordered secondary structure of proteins in the presence of Ag+ was assessed through the conformational shift shown for amides I and II, and further correlated with the up-regulated expression of peptidase (hfq) and chaperone (dnaJ), and regulation of transpeptidase expression (ycfS and ycbB). Interestingly, as these transpeptidases act on the structural integrity of the cell wall, regulation of their expression may explain the morphological damage reported under Ag+-mediated stress. This result clearly demonstrates that the cell membrane is a key target of ionic silver.


Subject(s)
Escherichia coli K12/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Silver Nitrate/pharmacology , Stress, Physiological/drug effects , Transcription, Genetic/drug effects , Escherichia coli K12/genetics , Escherichia coli Proteins/genetics , Silver/pharmacology , Stress, Physiological/genetics , Transcription, Genetic/genetics
16.
BMC Genomics ; 16: 275, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25887031

ABSTRACT

BACKGROUND: Changes to mRNA lifetime adjust mRNA concentration, facilitating the adaptation of growth rate to changes in growth conditions. However, the mechanisms regulating mRNA lifetime are poorly understood at the genome-wide scale and have not been investigated in bacteria growing at different rates. RESULTS: We used linear covariance models and the best model selected according to the Akaike information criterion to identify and rank intrinsic and extrinsic general transcript parameters correlated with mRNA lifetime, using mRNA half-life datasets for E. coli, obtained at four growth rates. The principal parameter correlated with mRNA stability was mRNA concentration, the mRNAs most concentrated in the cells being the least stable. However, sequence-related features (codon adaptation index (CAI), ORF length, GC content, polycistronic mRNA), gene function and essentiality also affected mRNA lifetime at all growth rates. We also identified sequence motifs within the 5'UTRs potentially related to mRNA stability. Growth rate-dependent effects were confined to particular functional categories (e.g. carbohydrate and nucleotide metabolism). Finally, mRNA stability was less strongly correlated with the amount of protein produced than mRNA concentration and CAI. CONCLUSIONS: This study provides the most complete genome-wide analysis to date of the general factors correlated with mRNA lifetime in E. coli. We have generalized for the entire population of transcripts or excluded determinants previously defined as regulators of stability for some particular mRNAs and identified new, unexpected general indicators. These results will pave the way for discussions of the underlying mechanisms and their interaction with the growth physiology of bacteria.


Subject(s)
Escherichia coli/genetics , Genome, Bacterial , RNA, Messenger/metabolism , 5' Untranslated Regions , Base Composition , Base Sequence , Codon/metabolism , Escherichia coli/growth & development , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Half-Life , Models, Biological , Open Reading Frames/genetics , RNA Stability
17.
Nucleic Acids Res ; 42(4): 2460-72, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24243845

ABSTRACT

Microorganisms extensively reorganize gene expression to adjust growth rate to changes in growth conditions. At the genomic scale, we measured the contribution of both transcription and transcript stability to regulating messenger RNA (mRNA) concentration in Escherichia coli. Transcriptional control was the dominant regulatory process. Between growth rates of 0.10 and 0.63 h(-1), there was a generic increase in the bulk mRNA transcription. However, many transcripts became less stable and the median mRNA half-life decreased from 4.2 to 2.8 min. This is the first evidence that mRNA turnover is slower at extremely low-growth rates. The destabilization of many, but not all, transcripts at high-growth rate correlated with transcriptional upregulation of genes encoding the mRNA degradation machinery. We identified five classes of growth-rate regulation ranging from mainly transcriptional to mainly degradational. In general, differential stability within polycistronic messages encoded by operons does not appear to be affected by growth rate. We show here that the substantial reorganization of gene expression involving downregulation of tricarboxylic acid cycle genes and acetyl-CoA synthetase at high-growth rates is controlled mainly by transcript stability. Overall, our results demonstrate that the control of transcript stability has an important role in fine-tuning mRNA concentration during changes in growth rate.


Subject(s)
Escherichia coli/genetics , Gene Expression Regulation, Bacterial , RNA Stability , RNA, Messenger/metabolism , Transcription, Genetic , Escherichia coli/growth & development , Escherichia coli/metabolism , Glucose/metabolism
18.
PLoS Comput Biol ; 9(10): e1003240, 2013.
Article in English | MEDLINE | ID: mdl-24130467

ABSTRACT

Protein synthesis is a template polymerization process composed by three main steps: initiation, elongation, and termination. During translation, ribosomes are engaged into polysomes whose size is used for the quantitative characterization of translatome. However, simultaneous transcription and translation in the bacterial cytosol complicates the analysis of translatome data. We established a procedure for robust estimation of the ribosomal density in hundreds of genes from Lactococcus lactis polysome size measurements. We used a mechanistic model of translation to integrate the information about the ribosomal density and for the first time we estimated the protein synthesis rate for each gene and identified the rate limiting steps. Contrary to conventional considerations, we find significant number of genes to be elongation limited. This number increases during stress conditions compared to optimal growth and proteins synthesized at maximum rate are predominantly elongation limited. Consistent with bacterial physiology, we found proteins with similar rate and control characteristics belonging to the same functional categories. Under stress conditions, we found that synthesis rate of regulatory proteins is becoming comparable to proteins favored under optimal growth. These findings suggest that the coupling of metabolic states and protein synthesis is more important than previously thought.


Subject(s)
Bacterial Proteins/genetics , Computational Biology/methods , Genome, Bacterial/genetics , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Polyribosomes/genetics , Bacterial Proteins/metabolism , Databases, Protein , Polyribosomes/metabolism , Protein Biosynthesis
19.
BMC Genomics ; 14: 588, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23985063

ABSTRACT

BACKGROUND: The stress response in bacteria involves the multistage control of gene expression but is not entirely understood. To identify the translational response of bacteria in stress conditions and assess its contribution to the regulation of gene expression, the translational states of all mRNAs were compared under optimal growth condition and during nutrient (isoleucine) starvation. RESULTS: A genome-scale study of the translational response to nutritional limitation was performed in the model bacterium Lactococcus lactis. Two measures were used to assess the translational status of each individual mRNA: the fraction engaged in translation (ribosome occupancy) and ribosome density (number of ribosomes per 100 nucleotides). Under isoleucine starvation, half of the mRNAs considered were translationally down-regulated mainly due to decreased ribosome density. This pattern concerned genes involved in growth-related functions such as translation, transcription, and the metabolism of fatty acids, phospholipids and bases, contributing to the slowdown of growth. Only 4% of the mRNAs were translationally up-regulated, mostly related to prophagic expression in response to stress. The remaining genes exhibited antagonistic regulations of the two markers of translation. Ribosome occupancy increased significantly for all the genes involved in the biosynthesis of isoleucine, although their ribosome density had decreased. The results revealed complex translational regulation of this pathway, essential to cope with isoleucine starvation.To elucidate the regulation of global gene expression more generally, translational regulation was compared to transcriptional regulation under isoleucine starvation and to other post-transcriptional regulations related to mRNA degradation and mRNA dilution by growth. Translational regulation appeared to accentuate the effects of transcriptional changes for down-regulated growth-related functions under isoleucine starvation although mRNA stabilization and lower dilution by growth counterbalanced this effect. CONCLUSIONS: We show that the contribution of translational regulation to the control of gene expression is significant in the stress response. Post-transcriptional regulation is complex and not systematically co-directional with transcription regulation. Post-transcriptional regulation is important to the understanding of gene expression control.


Subject(s)
Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Lactococcus lactis/genetics , Protein Biosynthesis , Stress, Physiological/genetics , Adaptation, Physiological/genetics , Bacterial Proteins/metabolism , Cluster Analysis , Isoleucine/deficiency , Lactococcus lactis/metabolism , Polyribosomes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome
20.
PLoS One ; 8(3): e59059, 2013.
Article in English | MEDLINE | ID: mdl-23516597

ABSTRACT

Bacterial adaptation involves extensive cellular reorganization. In particular, growth rate adjustments are associated with substantial modifications of gene expression and mRNA abundance. In this work we aimed to assess the role of mRNA degradation during such variations. A genome-wide transcriptomic-based method was used to determine mRNA half-lives. The model bacterium Lactococcus lactis was used and different growth rates were studied in continuous cultures under isoleucine-limitation and in batch cultures during the adaptation to the isoleucine starvation. During continuous isoleucine-limited growth, the mRNAs of different genes had different half-lives. The stability of most of the transcripts was not constant, and increased as the growth rate decreased. This half-life diversity was analyzed to investigate determinants of mRNA stability. The concentration, length, codon adaptation index and secondary structures of mRNAs were found to contribute to the determination of mRNA stability in these conditions. However, the growth rate was, by far, the most influential determinant. The respective influences of mRNA degradation and transcription on the regulation of intra-cellular transcript concentration were estimated. The role of degradation on mRNA homeostasis was clearly evidenced: for more than 90% of the mRNAs studied during continuous isoleucine-limited growth of L. lactis, degradation was antagonistic to transcription. Although both transcription and degradation had, opposite effects, the mRNA changes in response to growth rate were driven by transcription. Interestingly, degradation control increased during the dynamic adaptation of bacteria as the growth rate reduced due to progressive isoleucine starvation in batch cultures. This work shows that mRNA decay differs between gene transcripts and according to the growth rate. It demonstrates that mRNA degradation is an important regulatory process involved in bacterial adaptation. However, its impact on the regulation of mRNA levels is smaller than that of transcription in the conditions studied.


Subject(s)
RNA Stability/physiology , Gene Expression Regulation, Bacterial/genetics , Gene Expression Regulation, Bacterial/physiology , Lactococcus lactis/genetics , Lactococcus lactis/physiology , RNA Stability/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...