Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
J Mol Model ; 30(8): 241, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954102

ABSTRACT

CONTEXT: In silico study investigates the activation of sulfur dioxide by newly designed frustrated Lewis pairs, i.e., [P(tBu)3…B(C2NBSHF2)3], where the Lewis acid part is a super Lewis acid. The activation process involves the making of P-S and B-O bonds, leading to the formation of an FLP-SO2 adduct. The calculated results demonstrate that the activation of SO2 by the FLP is almost barrierless and exothermic. Exploration of the impact of the solvent environment on the feasibility and energetics of the reaction has been investigated. The exothermicity is increasing in nonpolar solvents. METHODS: This study focuses on understanding the electronic activity of SO2 activation by FLP with the help of the Minnesota 06 functional, M06-2X (global hybrid functional with 54% HF exchange) along with Pople's basis set, 6-311G (d, p). Principal interacting orbital and extended transition state-natural orbitals for chemical valence studies, giving impactful insight into the favorable orbital interaction and electron transfer in this reaction. Furthermore, useful CDFT descriptors such as reaction force constant and reaction electronic flux profiles along the intrinsic reaction coordinate give insights into the synchronicity and total electronic activity of the reaction.

2.
J Phys Chem A ; 128(1): 97-106, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38149919

ABSTRACT

Understanding the mechanism of disulfide bond cleavage is important in various scientific disciplines including organic synthesis, catalysis, and biochemistry. In this study, an in silico investigation has been carried out for the dissociation of disulfide bonds using newly designed frustrated Lewis pairs (FLPs). The study revealed that the cleavage of the disulfide bond by the FLP P(tBu)3/B(C2NBSHF2)3 can also be used like the conventional FLP (tBu)3P/B(C6F5)3. It has been observed that the reaction is almost thermoneutral in the gas phase but exothermic in nonpolar solvents, such as toluene, heptane, and hexane. Furthermore, the natural bond orbital (NBO) describes insights into the role of FLPs in facilitating this reaction. Additionally, reaction force and force constant studies shed light on the energy requirements for completing the reaction and the synchronous nature of the dissociation process, respectively. Reaction electronic flux (REF) and its separations give the pattern of electronic activity during the chemical reaction. Extended transition state-natural orbitals for chemical valence (ETS-NOCV) and principal interacting orbital (PIO) analysis provide valuable information about the orbital interactions during the chemical reaction.

3.
Phys Chem Chem Phys ; 25(35): 23708-23716, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37614158

ABSTRACT

The role of boron-doped thiazoles as a Lewis acid catalyst in [4+2] cycloaddition reaction between 1,3-butadiene and acrolein has been addressed. Three different organic heterocycles were designed to study their catalytic activity. It has been observed that these heterocycles efficiently work as catalysts than the well-known Lewis acid BF3. All the reactions follow the normal electron demand process and are exothermic. Different conceptual DFT-based reactivity descriptors and electronic structure principles such as maximum hardness and minimum electrophilicity lend additional support to the feasibility of the reaction mechanism. The reaction force (RF), reaction electronic flux (REF), and its different components exhibit a detailed electronic activity throughout the reaction.

4.
J Org Chem ; 88(14): 10147-10155, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37402179

ABSTRACT

An investigation into the sensitivity of reaction conditions to a highly utilized protocol has been reported, wherein the mono-Boc functionalization of prolinol could be controlled for the exclusive synthesis of either N-Boc, O-Boc, or oxazolidinone derivatives. Mechanistic investigation revealed that the elementary steps could possibly be controlled by (a) a requisite base to recognize the differently acidic sites (NH and OH) for the formation of the conjugate base, which reacts with the electrophile, and (b) the difference in nucleophilicity of the conjugate basic sites. Herein, a successful chemoselective functionalization of the nucleophilic sites of prolinol by employing a suitable base is reported. This has been achieved by exploiting the relative acidity difference of NH and OH along with the reversed nucleophilicity of the corresponding conjugate bases N- and O-. This protocol has also been used for the synthesis of several O-functionalized prolinol derived organocatalysts, few of which have been newly reported.

5.
Phys Chem Chem Phys ; 24(35): 21105-21111, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36018293

ABSTRACT

Superatoms, due to their various applications in redox and materials chemistry, have been a major topic of study in cluster science. Superhalogens constitute a special class of superatoms that mimic the chemistry of halogens and serve as building blocks of novel materials such as super and hyper salts, perovskite-based solar cells, solid-state electrolytes, and ferroelectric materials. These applications have led to a constant search for new class of superhalogens. In this study, using density functional theory, we show that recently synthesized [Si9{Si (tBu)2H}3] and [Si9{Si (TMS)3}3] Zintl clusters not only behave like halogens but also when functionalized with suitable ligands exhibit superhalogen characteristics. Frontier molecular orbital (FMO) analyses give insights into the electron-accepting nature of the Zintl clusters. Additional bonding techniques such as energy density at the bond critical point (BCP) and adaptive natural density partitioning (AdNDP) gives complementary information about the nature of bonding in Si9-based Zintl clusters. The potential of these Zintl clusters in the synthesis of new electrolytes in Li-ion batteries is also investigated.

6.
J Phys Chem A ; 125(27): 5886-5894, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34185533

ABSTRACT

Superalkalis and superhalogens are atomic clusters that mimic the chemistry of alkali and halogen atoms, respectively; the ionization energies of the superalkalis are less than those of alkali atoms, while the electron affinities of superhalogens are larger than those of the halogen atoms. These superions can serve as the building blocks of a new class of supersalts with applications in solar cells, metal-ion batteries, multiferroic materials, and so on. While considerable progress has been made in the design and synthesis of superhalogens, a similar understanding of superalkalis is lacking. Using density functional theory with hybrid exchange-correlation functional and Gaussian basis sets, we have systematically studied the role of size and composition on the properties of two different classes of clusters whose stabilities are governed by the Wade-Mingos polyhedral skeletal electron pair theory. One class belongs to the closo-borane family LimBnXn (m = 1, 2, 3; n = 6, 12; X = H, F, CN), while the other to the Zintl ions Lim[Be@Ge9]. We show that Li3BnXn and Li3[Be@Ge9] clusters are superalkalis with ionization energies as low as 2.84 eV in Li3B6H6. However, contrary to expectation, the ionization energies do not decrease with increasing cluster volume. Instead, ionization energies are linked to the X ligands' electron affinities; the larger the electron affinity, the higher is the ionization energy. The understanding gained here will help in the discovery of superalkalis and, hence, enrich the library of supersalts.

7.
J Phys Chem A ; 125(13): 2751-2758, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33760618

ABSTRACT

In quest of a Zintl ion-based Lewis superacids, Al(Ge9L3)3 {L= H, CH3, CHO and CN} compounds have been designed and their properties have been studied within the framework of conceptual density functional theory-based reactivity descriptors. Superacid property has been identified for these complexes as per the fluoride ion affinity (FIA) values. Studies reveal that Al[Ge9(CN)3]3 and Al[Ge9(CH3)3]3 behave like superacids as their FIA exceeds the value of SbF5, which is considered as the strongest Lewis acid. It has been observed that the ligand plays an important role in reactivity as well as in Lewis acidic property.

8.
ACS Omega ; 6(5): 3659-3674, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33585746

ABSTRACT

Two fluorescence active bromoaniline-based Schiff base chemosensors, namely, (E)-4-bromo-2-(((4-bromophenyl)imino)methyl)phenol (HL1 ) and (E)-2-(((4-bromophenyl)imino)methyl)phenol (HL2 ), have been employed for the selective and notable detection of Cu2+ and Zn2+ ions, respectively, with the simultaneous formation of two new metal complexes [Cu(L1)2] (1) and [Zn(L2)2] (2). X-ray single crystal analyses indicate that complexes 1 and 2 are tetra-coordinated systems with substantial CH...π/π...π stacking interactions in the solid-state crystal structures. These two complexes are exploited for the next step detection of Al3+ and Hg2+ where complex 2 exhibits impressive results via turn-off fluorescence quenching in (DMSO/H2O) HEPES buffer medium. The sensing phenomena are optimized by UV-vis spectral analyses as well as theoretical calculations (density functional theory and time-dependent density functional theory). The combined detection phenomena of the ligand (HL2 ) and complex 2 are exclusively utilized for the first time to construct a molecular memory device, intensifying their multisensoric properties. Furthermore, the DNA- and human serum albumin (HSA)-binding efficacies of these two complexes are examined by adopting electronic and fluorometric titration methods. Complex 2 shows a higher DNA-binding ability in comparison with complex 1, whereas in the case of HSA, the reverse situation is observed. Finally, the binding modes of both the complexes with DNA and HSA have been investigated through molecular docking studies, suggesting good agreement with the experimental results.

9.
Chem Phys Lett ; 764: 138280, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33362291

ABSTRACT

Interactions of hydroxychloroquin (HCQ) with the receptor binding domain (RBD) of SARS-CoV-2 were studied from atomistic simulation and ONIOM techniques. The key-residues of RBD responsible for the human transmission are recognized to be blocked in a heterogeneous manner with the favorable formation of key-residue:HCQ (1:1) complex. Such heterogeneity in binding was identified to be governed by the differential life-time of the hydrogen bonded water network anchoring HCQ and the key-residues. The intermolecular proton transfer facilitates the most favorable Lys417:HCQ complexation. The study demonstrates that off-target bindings of HCQ need to be minimized to efficiently prevent the transmission of SARS-CoV-2.

11.
J Phys Chem A ; 124(36): 7248-7258, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32786962

ABSTRACT

Density functional theory (DFT) is one of the popular methods to understand the electronic structure of molecular systems based on electronic density. On the basis of this theory, several conceptual DFT descriptors have been developed which can deal with the stability, reactivity, and several other physicochemical properties of molecules. Here, we have taken a nine-atom-functionalized deltahedral Zintl cluster of germanium (Ge) to examine the alkylation reaction mechanism. The study showed that the Zintl cluster having a methyl group as a ligand, [Ge9(CH3)3-], acts as a better nucleophile than the cyanide (-CN)-substituted cluster [Ge9(CN)3-] in terms of different thermodynamic parameters like free energy, enthalpy of activation, reaction energy, etc. A detailed reaction electronic flux analysis reveals the nature of the electronic activity throughout the reaction pathway. The reaction force, Wiberg bond indices, and dual descriptor lend additional support to the reaction mechanism. It has been found that the alkylation reaction between the Zintl ion and the alkyl halide follows a SN2-like mechanism.

12.
J Phys Chem A ; 124(22): 4455-4462, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32383876

ABSTRACT

The cycloaddition of ethylene, cyanoethylene, and propylene to a five-membered P/B frustrated Lewis pair (FLP) is shown to be highly favorable under normal conditions, as confirmed by the computed thermodynamic and kinetic data. All of these cycloaddition reactions are concerted as highlighted by the intrinsic reaction coordinate (IRC) and Wiberg bond index calculations. Almost 70% of the reaction force is required for structural orientation to initiate electronic activity. The reactions are interpreted by the frontier molecular orbital (FMO) analysis and conceptual density functional theory (DFT)-based reactivity descriptors. It appears that ethylene and propylene will act as nucleophiles, while the FLP will act as an electrophile throughout the cycloaddition reaction, however, cyanoethylene will act as an electrophile and the FLP as a nucleophile. Regioselectivities of the cycloadditon of cyanoethylene and propylene to the FLP are further verified through philicity and dual descriptors. It is demonstrated that an FLP can be forced to act as an electrophile or a nucleophile by intelligently selecting its partner in a cycloaddition reaction. Even the P and B centers would behave differently within the same FLP. This strategy may be properly exploited by the experimentalists in designing a suitable reaction for the synthesis of any useful molecule possessing the desired property.

13.
Inorg Chem ; 59(7): 4493-4507, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32159340

ABSTRACT

Differentially selective molecular sensors that exhibit differential response toward multiple analytes are cost-effective and in high demand for various practical applications. A novel, highly differentially selective electrochemical and fluorescent chemosensor, 5, based on a ferrocene-appended coumarin-quinoline platform has been designed and synthesized. Our designed probe is very specific toward Fe3+ via a reversible redox process, whereas it detects Cu2+ via irreversible oxidation. Interestingly, it exhibits differential affinity toward the Cu+ ion via complexation. High-resolution mass spectrometry, 1H NMR titration, and IR spectral studies revealed the formation of a bidentate Cu+ complex involving an O atom of the amide group attached to the quinoline ring and a N atom of imine unit, and this observation was further supported by quantum-chemical calculations. The metal binding responses were further investigated by UV-vis, fluorescence spectroscopy, and electrochemical analysis. Upon the addition of Fe3+ and Cu2+ ions, the fluorescence emission of probe 5 shows a "turn-on" signal due to inhibition of the photoinduced electron transfer (PET) process from a donor ferrocene unit to an excited-state fluorophore. The addition of sodium l-ascorbate (LAS) as a reducing agent causes fluorescence "turn off" for the Fe3+ ion because of reemergence of the PET process but not for the Cu2+ ion because it oxidizes the ferrocene unit to a ferrocenium ion with its concomitant reduction to Cu+, which further complexes with 5. Thermodynamic calculations using the Weller equation along with density functional theory calculations validate the feasibility of the PET process. A unique combination of Fe3+, LAS, and Cu2+ ions has been used to produce a molecular system demonstrating combinational "AND-OR" logic operation.

14.
ACS Appl Mater Interfaces ; 12(5): 5389-5402, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31931570

ABSTRACT

The increase in the use of bactericides is a matter of grave concern and a serious threat to human health. The present situation demands rapid and efficient detection and elimination of antibiotic-resistant microbes. Herein, we report the synthesis of a simple C3-symmetric molecular system (TGP) with an intrinsic positive charge through a single-step Schiff base condensation. In a water-dimethyl sulfoxide (DMSO) solvent mixture (80:20 v/v), TGP molecules self-aggregate to form spherical nanoparticles with a positively charged surface that displays efficient fluorescence owing to the aggregation-induced emission (AIE) phenomenon. Both Gram-positive and Gram-negative bacteria could be effectively detected through "turn-off" fluorescence spectroscopy as the electrostatic interaction of the resultant nanoaggregates with the negatively charged bacterial surface induced quenching of fluorescence of the nanoparticles. The fluorescence analysis and steady-state lifetime studies of TGP nanoparticles suggest that a nonradiative decay through photoinduced electron transfer from the nanoparticles to the bacterial surface leads to effective fluorescence quenching. Further, the TGP nanoaggregates demonstrate potent antimicrobial activity against microbes such as multidrug-resistant bacteria and fungi at a concentration as low as 74 µg/mL. A combination of factors including ionic surface characteristics of the nanoparticles for strong electrostatic binding on the bacterial surface followed by possible photoinduced electron transfer from the nanoaggregates to the bacterial membrane and enhanced oxidative stress in the membrane resulting from reactive oxygen species (ROS) generation is found accountable for the high antimicrobial activity of the TGP nanoparticles. The effective disruption of membrane integrity in both Gram-positive and Gram-negative bacteria upon interaction with the nanoaggregates can be observed from field emission scanning electron microscopy (FESEM) studies. The development of simple pathways for the molecular design of multifunctional broad-spectrum antimicrobial systems for rapid and real-time detection, wash-free imaging, and eradication of drug-resistant microbes might be crucial to combat pathogenic agents.


Subject(s)
Anti-Infective Agents/chemistry , Guanidine/chemistry , Nanoparticles/chemistry , Anti-Infective Agents/pharmacology , Cations/chemistry , Dimethyl Sulfoxide/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Microscopy, Confocal , Microscopy, Electron, Scanning , Quantum Theory , Reactive Oxygen Species/metabolism , Schiff Bases/chemistry , Static Electricity , Water/chemistry
15.
Phys Chem Chem Phys ; 22(4): 1923-1931, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31912831

ABSTRACT

The unexplored area of organic superacids was investigated in terms of both Brønsted and Lewis concepts of acids and bases. The primary requirement of a superacid-high affinity for electron/fluoride ions was fulfilled using two strategies: (i) using the superhalogen-type heterocyclic framework and (ii) selecting systems that have an electron count one short of attaining (4n + 2) Hückel aromaticity. With these in mind, eleven systems were considered throughout the study, expected to cross the target of 100% H2SO4 acidity and/or the fluoride affinity of SbF5. To enhance the pKa and F- affinity values of the considered systems, electron-withdrawing ligands F and CN were employed. The superhalogen and aromaticity properties were verified by vertical detachment energy (VDE) and nucleus independent chemical shift (NICS) calculations, respectively. Finally, the collective effect of the potential super Lewis acids was looked into using a BL3 skeleton with them acting as ligands.

16.
J Mol Model ; 25(11): 334, 2019 Nov 09.
Article in English | MEDLINE | ID: mdl-31705316

ABSTRACT

Based on first principle calculation, activation of CO2 has been analyzed thoroughly by using different conceptual density functional theory based descriptors like reaction force, reaction force constant, reaction electronic flux, dual descriptor, etc. via dihydrogenation reaction of B3N3, H2 and CO2. The total reaction is a two-step reaction where initially B3N3H2 is formed from the reaction between B3N3 and H2 and in the second step HCOOH is form due to the reaction of CO2 by B3N3H2. It has been found that the di-hydrogen reaction for the CO2 activation is endothermic in nature, which can be changed to exothermic reaction by applying proper external electric field. Movement of H2 plays an important role in the CO2 activation process. The reaction force constant, Wiberg bond index and its derivative reveal that the reaction is slightly asynchronous and concerted in nature.

17.
Phys Chem Chem Phys ; 21(44): 24300-24307, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31524210

ABSTRACT

Manganocene [Mn(C5H5)2], a 17-electron system, is expected to have a high electron affinity, as addition of an extra electron would make it a closed-shell 18-electron system. Surprisingly, it has a very low electron affinity of only 0.28 eV. Combined with its high ionization potential of around 7.0 eV, manganocene, therefore, should not be eager to either donate or accept an electron. We show that this property can be fundamentally altered with the proper choice of ligands, even though the total electron count remains the same. For example, the electron affinities of manganocene-derivatives Mn[C5(CN)5]2 and Mn[C5(BO)5]2, created by replacing H with CN or BO, are found to be 4.78 eV and 4.85 eV, respectively, making these species superhalogens. The power of the ligands is further demonstrated by studying the stability of their di-anions. Note that [Mn(C5X5)2]2- (X = H, CN, BO) di-anions, with 19-electrons, have one electron more than necessary to satisfy the 18-electron rule for stability. This factor, combined with the unavoidable repulsion between the two extra electrons, should destabilize [Mn(C5X5)2]2-. While that is the case for [Mn(C5H5)2]2-, we show that both Mn[C5(CN)5]22- and Mn[C5(BO)5]22- are stable against auto-detachment of the second electron by 0.7 eV and 0.38 eV, respectively. These results, based on first-principles calculations, demonstrate that ligand-manipulation can be used as an effective strategy to design and synthesize new materials with novel and tailored properties.

18.
Phys Chem Chem Phys ; 21(42): 23301-23304, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31490523

ABSTRACT

Boron compounds usually exhibit Lewis acidity at the boron center due to the presence of vacant p-orbitals. We show that this chemistry can be altered by an appropriate choice of ligands to decorate the boron center. To elucidate this effect, we studied the interactions of boron with two classes of ligands, one based on penta-substituted phenyl species (C6X5, X = F, BO, CN) and the other based on Zintl-ion-based groups (Ge9Y3, Y = H, CH3, BO, CN). An in-depth analysis of the charges and Fukui function values at the local atomic sites of the substituted boron derivatives B(C6X5)3 and B[Ge9Y3]3 shows that the B-center in the former is electrophilic, while it is nucleophilic in the latter. The chemical stability of the B[Ge9Y3]3 species is shown to be due to the presence of strong 2c-2e bonds between the B and Ge centers. Thus, the general notion of the Lewis acid nature of a boron center depends upon the choice of the ligand.

19.
J Mol Model ; 25(8): 218, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31292761

ABSTRACT

A new magnetic superalkali/superhalogen molecule based on the sandwich complex manganocene is reported. The hydrogen atoms of the cyclopentadienyl rings are periodically substituted with electron-donating and electron-withdrawing ligands (or both) to design substituted manganocene complexes. The substituted manganocene complexes exhibit the properties of superalkali and/or superhalogen depending on the nature of the substituents. The substituents, therefore, act as "switches" that can modify the properties of the parent manganocene moiety by keeping its magnetic nature intact. The substituted complexes also show marked nonlinear optical behavior.

20.
Chemphyschem ; 20(12): 1607-1612, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-30989750

ABSTRACT

Lewis acids play an important role in synthetic chemistry. Using first-principle calculations on some newly designed molecules containing boron and organic heterocyclic superhalogen ligands, we show that the acid strength depends on the charge of the central atom as well as on the ligands attached to it. In particular, the strength of the Lewis acid increases with increasing electron withdrawing power of the ligand. With this insight, we highlight the importance of superhalogen-based ligands in the design of strong Lewis acids. Calculated fluoride ion affinity (FIA) values of B[C2 BNO(CN)3 ]3 and B[C2 BNS(CN)3 ]3 show that these are super Lewis acids.

SELECTION OF CITATIONS
SEARCH DETAIL
...