Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
JBMR Plus ; 5(3): e10454, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33778323

ABSTRACT

Bruck syndrome (BS) is a congenital disorder characterized by joint flexion contractures, skeletal dysplasia, and increased bone fragility, which overlaps clinically with osteogenesis imperfecta (OI). On a genetic level, BS is caused by biallelic mutations in either FKBP10 or PLOD2. PLOD2 encodes the lysyl hydroxylase 2 (LH2) enzyme, which is responsible for the hydroxylation of cross-linking lysine residues in fibrillar collagen telopeptide domains. This modification enables collagen to form chemically stable (permanent) intermolecular cross-links in the extracellular matrix. Normal bone collagen develops a unique mix of such stable and labile lysyl-oxidase-mediated cross-links, which contribute to bone strength, resistance to microdamage, and crack propagation, as well as the ordered deposition of mineral nanocrystals within the fibrillar collagen matrix. Bone from patients with BS caused by biallelic FKBP10 mutations has been shown to have abnormal collagen cross-linking; however, to date, no direct studies of human bone from BS caused by PLOD2 mutations have been reported. Here the results from a study of a 4-year-old boy with BS caused by compound heterozygous mutations in PLOD2 are discussed. Diminished hydroxylation of type I collagen telopeptide lysines but normal hydroxylation at triple-helical sites was found. Consequently, stable trivalent cross-links were essentially absent. Instead, allysine aldol dimeric cross-links dominated as in normal skin collagen. Furthermore, in contrast to the patient's bone collagen, telopeptide lysines in cartilage type II collagen cross-linked peptides from the patient's urine were normally hydroxylated. These findings shed light on the complex mechanisms that control the unique posttranslational chemistry and cross-linking of bone collagen, and how, when defective, they can cause brittle bones and related connective tissue problems. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

2.
Front Cell Dev Biol ; 8: 597857, 2020.
Article in English | MEDLINE | ID: mdl-33363150

ABSTRACT

Proteoglycans are structurally and functionally diverse biomacromolecules found abundantly on cell membranes and in the extracellular matrix. They consist of a core protein linked to glycosaminoglycan chains via a tetrasaccharide linkage region. Here, we show that CRISPR/Cas9-mediated b3galt6 knock-out zebrafish, lacking galactosyltransferase II, which adds the third sugar in the linkage region, largely recapitulate the phenotypic abnormalities seen in human ß3GalT6-deficiency disorders. These comprise craniofacial dysmorphism, generalized skeletal dysplasia, skin involvement and indications for muscle hypotonia. In-depth TEM analysis revealed disturbed collagen fibril organization as the most consistent ultrastructural characteristic throughout different affected tissues. Strikingly, despite a strong reduction in glycosaminoglycan content, as demonstrated by anion-exchange HPLC, subsequent LC-MS/MS analysis revealed a small amount of proteoglycans containing a unique linkage region consisting of only three sugars. This implies that formation of glycosaminoglycans with an immature linkage region is possible in a pathogenic context. Our study, therefore unveils a novel rescue mechanism for proteoglycan production in the absence of galactosyltransferase II, hereby opening new avenues for therapeutic intervention.

3.
Cell Syst ; 10(3): 275-286.e5, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32191876

ABSTRACT

Genetic mosaicism can manifest as spatially variable phenotypes that vary from site to site within an organism. Here, we use imaging-based phenomics to quantitate phenotypes at many sites within the axial skeleton of CRISPR-edited G0 zebrafish. Through characterization of loss-of-function cell clusters in the developing skeleton, we identify a distinctive size distribution shown to arise from clonal fragmentation and merger events. We quantitate the phenotypic mosaicism produced by somatic mutations of two genes, plod2 and bmp1a, implicated in human osteogenesis imperfecta. Comparison of somatic, CRISPR-generated G0 mutants to homozygous germline mutants reveals phenotypic convergence, suggesting that CRISPR screens of G0 animals can faithfully recapitulate the biology of inbred disease models. We describe statistical frameworks for phenomic analysis of spatial phenotypic variation present in somatic G0 mutants. In sum, this study defines an approach for decoding spatially variable phenotypes generated during CRISPR-based screens.


Subject(s)
CRISPR-Cas Systems/genetics , Mosaicism/embryology , Phenomics/methods , Animals , Biological Variation, Population , Bone Morphogenetic Protein 1/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Mosaicism/veterinary , Phenotype , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , Zebrafish/genetics
4.
BMC Genomics ; 20(1): 228, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30894119

ABSTRACT

BACKGROUND: Transgenic zebrafish lines with the expression of a fluorescent reporter under the control of a cell-type specific promoter, enable transcriptome analysis of FACS sorted cell populations. RNA quality and yield are key determinant factors for accurate expression profiling. Limited cell number and FACS induced cellular stress make RNA isolation of sorted zebrafish cells a delicate process. We aimed to optimize a workflow to extract sufficient amounts of high-quality RNA from a limited number of FACS sorted cells from Tg(fli1a:GFP) zebrafish embryos, which can be used for accurate gene expression analysis. RESULTS: We evaluated two suitable RNA isolation kits (the RNAqueous micro and the RNeasy plus micro kit) and determined that sorting cells directly into lysis buffer is a critical step for success. For low cell numbers, this ensures direct cell lysis, protects RNA from degradation and results in a higher RNA quality and yield. We showed that this works well up to 0.5× dilution of the lysis buffer with sorted cells. In our sort settings, this corresponded to 30,000 and 75,000 cells for the RNAqueous micro kit and RNeasy plus micro kit respectively. Sorting more cells dilutes the lysis buffer too much and requires the use of a collection buffer. We also demonstrated that an additional genomic DNA removal step after RNA isolation is required to completely clear the RNA from any contaminating genomic DNA. For cDNA synthesis and library preparation, we combined SmartSeq v4 full length cDNA library amplification, Nextera XT tagmentation and sample barcoding. Using this workflow, we were able to generate highly reproducible RNA sequencing results. CONCLUSIONS: The presented optimized workflow enables to generate high quality RNA and allows accurate transcriptome profiling of small populations of sorted zebrafish cells.


Subject(s)
Flow Cytometry , RNA/genetics , RNA/isolation & purification , Sequence Analysis, RNA , Zebrafish/genetics , Animals , Cell Count , Poly A/genetics , Quality Control
5.
Proc Natl Acad Sci U S A ; 115(34): E8037-E8046, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30082390

ABSTRACT

The type I collagenopathies are a group of heterogeneous connective tissue disorders, that are caused by mutations in the genes encoding type I collagen and include specific forms of osteogenesis imperfecta (OI) and the Ehlers-Danlos syndrome (EDS). These disorders present with a broad disease spectrum and large clinical variability of which the underlying genetic basis is still poorly understood. In this study, we systematically analyzed skeletal phenotypes in a large set of zebrafish, with diverse mutations in the genes encoding type I collagen, representing different genetic forms of human OI, and a zebrafish model resembling human EDS, which harbors a number of soft connective tissues defects, typical of EDS. Furthermore, we provide insight into how zebrafish and human type I collagen are compositionally and functionally related, which is relevant in the interpretation of human type I collagen-related disease models. Our studies reveal a high degree of intergenotype variability in phenotypic expressivity that closely correlates with associated OI severity. Furthermore, we demonstrate the potential for select mutations to give rise to phenotypic variability, mirroring the clinical variability associated with human disease pathology. Therefore, our work suggests the future potential for zebrafish to aid in identifying unknown genetic modifiers and mechanisms underlying the phenotypic variability in OI and related disorders. This will improve diagnostic strategies and enable the discovery of new targetable pathways for pharmacological intervention.


Subject(s)
Collagen Type I , Disease Models, Animal , Ehlers-Danlos Syndrome , Osteogenesis Imperfecta , Zebrafish , Animals , Animals, Genetically Modified , Collagen Type I/genetics , Collagen Type I/metabolism , Ehlers-Danlos Syndrome/genetics , Ehlers-Danlos Syndrome/metabolism , Ehlers-Danlos Syndrome/pathology , Humans , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/metabolism , Osteogenesis Imperfecta/pathology , Zebrafish/genetics , Zebrafish/metabolism
7.
Elife ; 62017 09 08.
Article in English | MEDLINE | ID: mdl-28884682

ABSTRACT

Phenomics, which ideally involves in-depth phenotyping at the whole-organism scale, may enhance our functional understanding of genetic variation. Here, we demonstrate methods to profile hundreds of phenotypic measures comprised of morphological and densitometric traits at a large number of sites within the axial skeleton of adult zebrafish. We show the potential for vertebral patterns to confer heightened sensitivity, with similar specificity, in discriminating mutant populations compared to analyzing individual vertebrae in isolation. We identify phenotypes associated with human brittle bone disease and thyroid stimulating hormone receptor hyperactivity. Finally, we develop allometric models and show their potential to aid in the discrimination of mutant phenotypes masked by alterations in growth. Our studies demonstrate virtues of deep phenotyping in a spatially distributed organ system. Analyzing phenotypic patterns may increase productivity in genetic screens, and facilitate the study of genetic variants associated with smaller effect sizes, such as those that underlie complex diseases.


Subject(s)
Biological Variation, Population , Skeleton/anatomy & histology , Skeleton/diagnostic imaging , X-Ray Microtomography/methods , Zebrafish/anatomy & histology , Animals , Humans , Sensitivity and Specificity
8.
J Bone Miner Res ; 31(11): 1930-1942, 2016 11.
Article in English | MEDLINE | ID: mdl-27541483

ABSTRACT

Bruck syndrome (BS) is a disorder characterized by joint flexion contractures and skeletal dysplasia that shows strong clinical overlap with the brittle bone disease osteogenesis imperfecta (OI). BS is caused by biallelic mutations in either the FKBP10 or the PLOD2 gene. PLOD2 encodes the lysyl hydroxylase 2 (LH2) enzyme, which is responsible for the hydroxylation of lysine residues in fibrillar collagen telopeptides. This hydroxylation directs crosslinking of collagen fibrils in the extracellular matrix, which is necessary to provide stability and tensile integrity to the collagen fibrils. To further elucidate the function of LH2 in vertebrate skeletal development, we created a zebrafish model harboring a homozygous plod2 nonsense mutation resulting in reduced telopeptide hydroxylation and crosslinking of bone type I collagen. Adult plod2 mutants present with a shortened body axis and severe skeletal abnormalities with evidence of bone fragility and fractures. The vertebral column of plod2 mutants is short and scoliotic with compressed vertebrae that show excessive bone formation at the vertebral end plates, and increased tissue mineral density in the vertebral centra. The muscle fibers of mutant zebrafish have a reduced diameter near the horizontal myoseptum. The endomysium, a layer of connective tissue ensheathing the individual muscle fibers, is enlarged. Transmission electron microscopy of mutant vertebral bone shows type I collagen fibrils that are less organized with loss of the typical plywood-like structure. In conclusion, plod2 mutant zebrafish show molecular and tissue abnormalities in the musculoskeletal system that are concordant with clinical findings in BS patients. Therefore, the plod2 zebrafish mutant is a promising model for the elucidation of the underlying pathogenetic mechanisms leading to BS and the development of novel therapeutic avenues in this syndrome. © 2016 American Society for Bone and Mineral Research.


Subject(s)
Arthrogryposis/pathology , Collagen Type I/metabolism , Lysine/metabolism , Musculoskeletal Abnormalities/pathology , Osteogenesis Imperfecta/pathology , Peptides/metabolism , Zebrafish/metabolism , Amino Acid Sequence , Animals , Arthrogryposis/complications , Arthrogryposis/diagnostic imaging , Arthrogryposis/metabolism , Bone and Bones/abnormalities , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Calcification, Physiologic , Catalytic Domain , Codon, Nonsense/genetics , Conserved Sequence/genetics , Cross-Linking Reagents/metabolism , Evolution, Molecular , Hydroxylation , Larva/metabolism , Mass Spectrometry , Musculoskeletal Abnormalities/complications , Musculoskeletal Abnormalities/diagnostic imaging , Musculoskeletal Abnormalities/metabolism , Notochord/pathology , Osteogenesis Imperfecta/complications , Osteogenesis Imperfecta/diagnostic imaging , Osteogenesis Imperfecta/metabolism , Phenotype , X-Ray Microtomography , Zebrafish Proteins/genetics
9.
Am J Hum Genet ; 97(4): 521-34, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26365339

ABSTRACT

The evolutionarily conserved transmembrane anterior posterior transformation 1 protein, encoded by TAPT1, is involved in murine axial skeletal patterning, but its cellular function remains unknown. Our study demonstrates that TAPT1 mutations underlie a complex congenital syndrome, showing clinical overlap between lethal skeletal dysplasias and ciliopathies. This syndrome is characterized by fetal lethality, severe hypomineralization of the entire skeleton and intra-uterine fractures, and multiple congenital developmental anomalies affecting the brain, lungs, and kidneys. We establish that wild-type TAPT1 localizes to the centrosome and/or ciliary basal body, whereas defective TAPT1 mislocalizes to the cytoplasm and disrupts Golgi morphology and trafficking and normal primary cilium formation. Knockdown of tapt1b in zebrafish induces severe craniofacial cartilage malformations and delayed ossification, which is shown to be associated with aberrant differentiation of cranial neural crest cells.


Subject(s)
Cilia/genetics , Ciliary Motility Disorders/genetics , Craniofacial Abnormalities/genetics , Membrane Proteins/genetics , Mutation/genetics , Ossification, Heterotopic/genetics , Osteochondrodysplasias/genetics , Amino Acid Sequence , Animals , Body Patterning , Cell Differentiation , Cell Movement , Cilia/metabolism , Cilia/pathology , Embryo, Nonmammalian/abnormalities , Female , Gene Expression Regulation, Developmental , Humans , In Situ Hybridization , Male , Membrane Proteins/metabolism , Molecular Sequence Data , Neural Crest/cytology , Neural Crest/metabolism , Pedigree , Protein Transport , Sequence Homology, Amino Acid , Signal Transduction , Zebrafish/embryology , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...