Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
BMC Oral Health ; 24(1): 551, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734599

ABSTRACT

BACKGROUND: Periodontal diseases may benefit more from topical treatments with nanoparticles rather than systemic treatments due to advantages such as higher stability and controlled release profile. This study investigated the preparation and characterization of thermosensitive gel formulations containing clindamycin-loaded niosomes and solid lipid nanoparticles (SLNs) loaded with fluconazole (FLZ), as well as their in vitro antibacterial and antifungal effects in the treatment of common microorganisms that cause periodontal diseases. METHODS: This study loaded niosomes and SLNs with clindamycin and FLZ, respectively, and assessed their loading efficiency, particle size, and zeta potential. The particles were characterized using a variety of methods such as differential scanning calorimetry (DSC), dynamic light scattering (DLS), and Transmission Electron Microscopy (TEM). Thermosensitive gels were formulated by combining these particles and their viscosity, gelation temperature, in-vitro release profile, as well as antibacterial and antifungal effects were evaluated. RESULTS: Both types of these nanoparticles were found to be spherical (TEM) with a mean particle size of 243.03 nm in niosomes and 171.97 nm in SLNs (DLS), and respective zeta potentials of -23.3 and -15. The loading rate was 98% in niosomes and 51% in SLNs. The release profiles of niosomal formulations were slower than those of the SLNs. Both formulations allowed the release of the drug by first-order kinetic. Additionally, the gel formulation presented a slower release of both drugs compared to niosomes and SLNs suspensions. CONCLUSION: Thermosensitive gels containing clindamycin-loaded niosomes and/or FLZ-SLNs were found to effectively fight the periodontitis-causing bacteria and fungi.


Subject(s)
Clindamycin , Fluconazole , Gels , Liposomes , Nanoparticles , Particle Size , Periodontal Diseases , Clindamycin/administration & dosage , Clindamycin/therapeutic use , Nanoparticles/chemistry , Fluconazole/administration & dosage , Fluconazole/pharmacology , Periodontal Diseases/drug therapy , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Microscopy, Electron, Transmission , Temperature , Calorimetry, Differential Scanning , Candida albicans/drug effects , Viscosity , Lipids/chemistry , Humans
2.
PLoS One ; 19(4): e0301799, 2024.
Article in English | MEDLINE | ID: mdl-38625846

ABSTRACT

BACKGROUND: Marginal fit significantly impacts the long-term success of dental restorations. Different pattern fabrication methods, including hand-waxing, milling, or 3D printing, may affect restorations accuracy. The effect of porcelain firing cycles on the marginal fit of metal-ceramic restorations remains controversial, with conflicting findings across studies. PURPOSE: The aim was to evaluate the potential effects of multiple porcelain firings (3, 5, 7 cycles) as well as pattern fabrication method (conventional hand-waxing, milling, and 3D printing) on the marginal adaptation of 3-unit implant-supported metal-ceramic fixed partial dentures. It was hypothesized that neither the wax pattern fabrication method nor repeated ceramic firings would significantly affect the marginal adaptation of metal-ceramic crowns. METHODS: In this in-vitro study, 30 Cobalt-Chromium alloy frameworks were fabricated based on pattern made through three techniques: conventional hand-waxing, CAD-CAM milling, and CAD-CAM 3D printing (n = 10 per group). Sixteen locations were marked on each abutment to measure the vertical marginal gap at four stages: before porcelain veneering and after 3, 5, and 7 firing cycles. The vertical marginal gap was measured using direct microscopic technique at ×80 magnification. Mean vertical marginal gap values were calculated and two-way ANOVA and Tukey's post hoc tests were used for inter-group comparisons (α = 0.05). RESULTS: The 3D printing group showed significantly lower (P<0.001) mean vertical marginal gaps (60-76 µm) compared to the milling (77-115 µm) and conventional hand-waxing (102-110 µm) groups. The milling group exhibited a significant vertical gap increase after 3 firing cycles (P<0.001); while the conventional (P = 0.429) and 3D printing groups (P = 0.501) showed no significant changes after 7 firing cycles. Notably, the vertical marginal gap in all groups remained below the clinically acceptable threshold of 120 µm. CONCLUSION: CAD-CAM 3D printing provided superior marginal fit compared to CAD-CAM milling and conventional hand-wax pattern fabrication methods. The impact of porcelain firing on the mean marginal gap was significant only in the milling group. All three fabrication techniques yielded clinically acceptable vertical marginal adaptation after repeated firings. Additive manufacturing holds promise to produce precise implant-supported prostheses.


Subject(s)
Computer-Aided Design , Dental Porcelain , Printing, Three-Dimensional , Denture, Partial, Fixed , Metal Ceramic Alloys , Dental Prosthesis Design , Crowns
3.
PLoS One ; 19(4): e0301361, 2024.
Article in English | MEDLINE | ID: mdl-38625957

ABSTRACT

OBJECTIVES: The impression technique highly influences the adaptation of ceramic restorations. Not enough information is available to compare the marginal (MF) and internal fit (IF) of endocrowns fabricated with various digitization techniques. Therefore, this in-vitro study aimed to compare the MF and IF of lithium disilicate (LDS) endocrowns fabricated through direct and indirect digital scanning methods. MATERIALS AND METHODS: One extracted maxillary molar was used to fabricate endocrowns. The digitization of the model was performed with (G1) direct scanning (n = 10) utilizing an intraoral scanner (IOS), (G2) indirectly scanning the conventional impression taken from the model using the same IOS (n = 10), (G3) indirectly digitalizing the obtained impression using an extraoral scanner (EOS) (n = 10), and (G4) scanning the poured cast using the same EOS (n = 10). The MF and IF of the endocrowns were measured using the replica method and a digital stereomicroscope. The Kruskal-Wallis test was used to analyze data. RESULTS: The studied groups differed significantly (p<0.001). G2 (130.31±7.87 µm) and G3 (48.43±19.14 µm) showed the largest and smallest mean vertical marginal gap, respectively. G2 and G3 led to the highest and lowest internal gaps in all regions, respectively. With significant differences among the internal regions (p<0.001), the pulpal area demonstrated the most considerable misfit in all groups. CONCLUSIONS: Scanning the impression using an extraoral scanner showed smaller marginal and internal gaps.


Subject(s)
Computer-Aided Design , Dental Porcelain , Ceramics , Molar , Dental Prosthesis Design , Dental Impression Technique
4.
BMC Oral Health ; 24(1): 389, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532413

ABSTRACT

BACKGROUND: While the concept of angled screw channels has gained popularity, there remains a scarcity of research concerning the torque loss and fracture strength of monolithic zirconia restorations with various screw channel angulations when exposed to thermomechanical cycling. This in-vitro study aimed to evaluate the reverse torque value and fracture resistance of one-piece screw-retained hybrid monolithic zirconia restorations with angulated screw channels after thermomechanical cycling. METHODS: One-piece monolithic zirconia restorations, with angulated screw channels set at 0°, 15°, and 25° (n = 6 per angulation) were fabricated and bonded to titanium inserts using a dual-cure adhesive resin cement. These assemblies were then screwed to implant fixtures embedded in acrylic resin using an omnigrip screwdriver, and reverse torque values were recorded before and after thermomechanical cycles. Additionally, fracture modes were assessed subsequent to the application of compressive load. One-way ANOVA and Bonferroni post hoc test were used to compare the groups (α = 0.05). RESULTS: The study groups were significantly different regarding the fracture resistance (P = 0.0015), but only insignificantly different in the mean percentage torque loss (P = 0.4400). Specifically, the fracture resistance of the 15° group was insignificantly higher compared to the 0° group (P = 0.9037), but significantly higher compared to the 25° group (P = 0.0051). Furthermore, the fracture resistance of the 0° group was significantly higher than that of the 25° group (P = 0.0114). CONCLUSIONS: One-piece hybrid monolithic zirconia restorations with angulated screw channels can be considered an acceptable choice for angulated implants in esthetic areas, providing satisfactory fracture strength and torque loss.


Subject(s)
Crowns , Dental Cements , Zirconium , Humans , Torque , Materials Testing , Dental Abutments , Titanium , Bone Screws , Dental Stress Analysis , Dental Restoration Failure
5.
PLoS One ; 18(12): e0295420, 2023.
Article in English | MEDLINE | ID: mdl-38039318

ABSTRACT

OBJECTIVES: This study aimed to evaluate the color stability and translucency of various types of monolithic zirconia after immersion in chlorhexidine and Listerine mouthwashes. MATERIALS AND METHODS: This experimental study was performed on 36 disk-shaped specimens fabricated from low-translucent, high-translucent, and multilayered monolithic zirconia (n = 12 per group). Each group was equally divided and immersed in either 2% chlorhexidine (CHX) or Listerine mouthwash for 2 min daily over 7 days. Changes in color (ΔE) and the translucency parameter (ΔTP) were evaluated and compared. The data were analyzed with one-way ANOVA followed by Tukey's post-hoc tests (α = 0.05). RESULTS: Chlorhexidine caused a significantly lower ΔE and a significantly higher ΔTP in multilayered zirconia compared to the low-translucency (ΔE: P = 0.0027, ΔTP: P<0.001) and the high-translucency zirconia group (ΔE: P<0.001, ΔTP: P = 0.022). Listerine caused a significantly higher ΔE in the high-translucency zirconia group compared to the multilayered zirconia group (P = 0.0165). It also resulted in a significantly higher mean ΔTP in the multilayered zirconia group compared to the low-translucency (P = 0.0003) and high-translucency zirconia groups (P = 0.019). CONCLUSIONS: In both mouthwashes, multilayered monolithic zirconia exhibited the highest color stability among the tested materials; albeit with the most pronounced changes in translucency. Meanwhile, high-translucency monolithic zirconia was more prone to discoloration when exposed to both mouthwashes.


Subject(s)
Chlorhexidine , Mouthwashes , Materials Testing , Color , Surface Properties , Zirconium , Ceramics , Dental Porcelain
6.
Adv Pharm Bull ; 13(4): 646-662, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38022807

ABSTRACT

The incidence rate of melanoma is dramatically increasing worldwide, raising it to the fifth most common cancer in men and the sixth in women currently. Resistance generally occurs to the agents used in chemotherapy; besides their high toxicity destroys the normal cells. This study reviewed a detailed summary of the structure, advantages, and disadvantages of nanotechnology-based drug delivery systems in the treatment of melanoma, as well as some nanocarrier applications in animal models or clinical studies. Respective databases were searched for the target keywords and 93 articles were reviewed and discussed. A close study of the liposomes, niosomes, transferosomes, ethosomes, transethosomes, cubosomes, dendrimers, cyclodextrins, solid lipid nanoparticles, and carbon nanotubes (CNTs) was conducted. It was found that these nanocarriers could inhibit metastasis and migration of melanoma cells and decrease cell viability. Conclusively, some nanocarriers like liposomes, niosomes, and transferosomes have been discussed as superior to conventional therapies for melanoma treatment.

7.
PLoS One ; 18(10): e0275374, 2023.
Article in English | MEDLINE | ID: mdl-37874843

ABSTRACT

The durability of dental restorations is highly determined by an accurate marginal fit, which is in turn affected by the high temperature of porcelain firing. Information is inadequate about the marginal adaptation of metal-ceramic restorations fabricated by soft metal milling technologies after repeated firings. This study aimed to compare the effect of repeated ceramic firings on the marginal fit of copings fabricated from cobalt-chromium through soft metal milling and a conventional nickel-chromium casting alloy. A single standard brass die was designed, machined, and scanned, based on which, 20 frameworks were designed and fabricated through either soft metal milling or conventional casting (n = 10 per group) and porcelain veneered. The vertical marginal fit of the metal copings was measured after 3, 5, and 7 firing cycles by using a digital microscope on 16 points around the finish line of the metal die at ×80 magnification. The data were analyzed through repeated measures ANOVA and independent t-test (α = 0.05). The marginal fit of neither metal group was significantly affected by the number of firing cycles (P = 0.747). However, the marginal discrepancy was statistically lower in the soft metal milling group than that in the casting group (P<0.001). Repeated porcelain firings did not significantly affect the marginal fit of either alloy and remained within the clinically acceptable range after firings. However, the milled alloy had superior marginal fit regardless of the number of firing cycles.


Subject(s)
Computer-Aided Design , Dental Porcelain , Metal Ceramic Alloys , Chromium Alloys , Cobalt , Chromium , Dental Prosthesis Design
8.
PLoS One ; 18(5): e0286251, 2023.
Article in English | MEDLINE | ID: mdl-37228096

ABSTRACT

OBJECTIVES: Micelles are nano-sized particles with a core-shell structure that are made by natural or synthetic polymers or copolymers. The aim of this study was to develop and characterize a copolymeric micelle using two polymers loaded with hydrophilic and lipophilic drugs. METHODS: Poly(ethylene glycol) and poly(ε-caprolactone) (PEG-PCL) were used to form a copolymeric micelle which was further loaded with either moxifloxacin or clarithromycin as hydrophilic and lipophilic drug samples, respectively. Characterization tests were done including fourier transform-infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy, encapsulation efficiency, particle size, zeta potential, polydispersity index, transmission electron microscopy, and in-vitro release test. RESULTS: The construction of the copolymer was confirmed by the results of FT-IR and 1H NMR spectroscopy tests. The encapsulation efficiency test exhibited that loading was about 50% for twelve formulations. Particle size, zeta potential, polydispersity index, and transmission electron microscopy confirmed the formation of monodispersed, uniform, and nano-sized micelles with a few negative charges. The kinetic model of release was fitted to the Higuchi model. CONCLUSIONS: Polymeric micelles consisting of PEG-PCL copolymer were loaded with adequate concentrations of hydrophilic (moxifloxacin) and lipophilic (clarithromycin) model drugs, with a mean particle size under 300 nm. Therefore, copolymeric micelles can be used as a suitable drug delivery system for mucous membranes and skin.


Subject(s)
Clarithromycin , Micelles , Spectroscopy, Fourier Transform Infrared , Moxifloxacin , Polymers/chemistry , Polyethylene Glycols/chemistry , Polyesters/chemistry , Particle Size , Drug Carriers/chemistry
9.
PLoS One ; 18(1): e0280816, 2023.
Article in English | MEDLINE | ID: mdl-36689439

ABSTRACT

OBJECTIVE: This study aimed to investigate the fracture resistance of one-piece screw-retained hybrid monolithic zirconia ceramic restorations in different implant angulations. MATERIALS AND METHODS: Three implant fixtures were embedded in acrylic resin blocks with 0°, 15°, and 25° angulations. For each group of implant angulations, 11 screw-retained one-piece monolithic zirconia restorations were made and bonded to the titanium inserts with a dual-cure self-adhesive resin. The complexes were screwed to the implant fixtures with titanium screws. The samples were thermocycled, subjected to compressive load, and fracture modes were recorded. One-way ANOVA and post hoc Tukey's test were used for statistical analyses (α = 0.05). RESULTS: One-way ANOVA showed the fracture resistance to be significanltly different among the study groups (P = 0.036). The 15° group was significantly more resistant than 0° (P = 0.031). However, the 25° group was not significantly different from the 15° (P = 0.203) and 0° groups (P = 0.624). Fractures occurred only on the restorations, not at the screw levels. CONCLUSIONS: Tilting the implant up to 15° improves the fracture resistance of one-piece screw-retained hybrid monolithic zirconia restorations; however, increasing the tilt to 25° would not yield restorations with significantly better fracture strength than the straight implants. Accordingly, when angulated implants are indicated in the esthetic zones, one-piece screw-retained hybrid monolithic zirconia ceramic restorations can be used with acceptable fracture strength.


Subject(s)
Titanium , Zirconium , Materials Testing , Ceramics , Bone Screws , Dental Stress Analysis , Dental Restoration Failure , Dental Abutments
10.
BMC Oral Health ; 23(1): 52, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717822

ABSTRACT

BACKGROUND: The accuracy of impression techniques determines the marginal fit of fixed prostheses. Marginal accuracy plays a main role in the success and failure of treatments. This in-vivo study evaluated the marginal fit of anterior three-unit monolithic zirconia fixed partial dentures (FPDs) using conventional and scannable polyvinyl siloxane impression materials. METHODS: Ten patients were selected to replace the lateral teeth with a three-unit monolithic zirconia bridge. For each patient, in the first group, an impression was made with a two-step putty-wash technique using scannable polyvinyl siloxane material (BONASCAN; DMP, Greece). In the identical session, as the second group, an impression of conventional putty-wash polyvinyl siloxane was taken (BONASIL A+ Putty; DMP, Greece). The marginal discrepancy was measured through the replicas, which were cut perpendicularly within the buccolingual and mesiodistal directions. An Independent t-test was employed for data analyses (P < 0.05). RESULTS: The marginal discrepancy in a conventional method for central abutment in mid-buccal, mid-lingual, mid-mesial, and mid-distal was higher than in the scannable method but it was not significant (P > 0.05). Also, the marginal discrepancy for canine abutment in the conventional method was higher than in the scannable method, but it was not significant, either (P > 0.05). CONCLUSIONS: FPDs fabricated from both scannable and conventional impression materials were not superior to each other in marginal fit for both central and canine abutments by evaluation using the replica technique.


Subject(s)
Dental Impression Technique , Dental Marginal Adaptation , Dental Prosthesis Design , Dental Impression Materials , Computer-Aided Design
11.
J Dent (Shiraz) ; 23(3): 307-313, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36506887

ABSTRACT

Statement of the Problem: Increasing the sintering temperature is suggested by some manufacturers as a way to enhance the translucency of monolithic zirconia crowns. Meanwhile, its effect on the marginal fit and compressive strength of the restoration is not fully understood. Purpose: This study aimed to evaluate the effect of sintering temperature on the marginal fit and compressive strength of monolithic zirconia crowns. Materials and Method: In this in vitro study, thirty crowns of pre-sintered monolithic zirconia were milled and sintered in a special furnace at either 1450°C or 1550°C (n=15 per group). The marginal gaps were measured at 18 spots on the dies with a digital microscope. To evaluate the compressive strength, the specimens were cemented on brass dies by using conventional glass ionomer cement. Vertical load was applied by a universal testing machine until fracture. One-way ANOVA test was used to analyze the results (α=0.05). Results: The marginal gap was not significantly different between the two groups (p= 0.062). A significantly higher mean value of compressive strength was observed in crowns sintered at 1550°c (1988.27±635.09 N) than those sintered at 1450 °c (1514.27±455.11 N) (p= 0.026). Conclusion: Although increasing the sintering temperature would not affect the marginal gap of monolithic zirconia crowns, it could significantly improve the compressive strength of zirconia restorations.

12.
PLoS One ; 17(6): e0270527, 2022.
Article in English | MEDLINE | ID: mdl-35749553

ABSTRACT

Structural durability of screw-cement-retained implant-supported zirconia-based restorations is an important factor in choosing the best type of restoration for clinical use. This study aimed to evaluate the effects of thermocycling on the fracture resistance of different types of screw-cement-retained implant-supported zirconia-based restoration. Two experimental groups (monolithic zirconia and porcelain-veneered zirconia) and a control group of porcelain-fused-to-metal restorations were fabricated via CAD-CAM (n = 14 per group). Half of the specimens of each group (n = 7) were subjected to 10000 thermal cycles. The compressive force was applied and the force leading to fracture was measured by using a Universal Testing Machine. The fractured modes were classified under a scanning electron microscope. The data were analyzed through two-way ANOVA, one-way ANOVA, and independent samples t-test (α = 0.05). Among the non-thermocycled subgroups, the monolithic zirconia specimens were significantly more fracture-resistant than the porcelain-veneered zirconia and porcelain-fused-to-metal groups (P<0.05); but it was not the same with aging (P>0.05). Thermocycling decreased the fracture resistance of all groups; however, the difference was not statistically significant (P<0.05). The monolithic zirconia presented higher fracture resistance than the bilayered restorations for screw-cement retained implant-supported restorations. Thermocycling decreased the fracture resistance of all types of restorations insignificantly which can be clinically important.


Subject(s)
Dental Porcelain , Zirconium , Bone Cements , Bone Screws , Computer-Aided Design , Dental Restoration Failure , Dental Stress Analysis , Glass Ionomer Cements , Materials Testing , Zirconium/chemistry
13.
PLoS One ; 17(1): e0262582, 2022.
Article in English | MEDLINE | ID: mdl-35041706

ABSTRACT

This study aimed to evaluate the effects of two types of provisional resin cements on the color and retentive strength of two different all-ceramic restorations cemented onto customized zirconia abutments. Forty-two crowns were made of monolithic zirconia and lithium disilicate ceramics (n = 21 per group) and cemented on customized zirconia abutments by using two provisional resin cements of TempBond Clear and Implantlink Semi, and TempBond serving as the control (n = 7 per cement subgroup). The specimens' color was measured before and after cementation and after thermocycling. The color difference was calculated by using CIEDE2000 formula (ΔE00). The tensile force was applied to assess the retentive strength. Kruskal-Wallis, Dunn's post-hoc, and Mann-Whitney non-parametric tests were used to compare ΔE00(1) and ΔE00(2) and two-way ANOVA followed by one-way ANOVA and Tukey's HSD post hoc test and T-test were used to compare retentive strength between subgroups. In the lithium disilicate group, ΔE00 of the control subgroup (TempBond) was significantly higher than that of Implantlink Semi cements subgroup (P = 0.001). But, in the monolithic zirconia group, ΔE00 of the control subgroup (TempBond) was significantly higher than that of Implantlink Semi (P = 0.020) and TempBond Clear cements (P = 0.007). In the monolithic zirconia group, the control subgroup (TempBond) was significantly more retentive than TempBond Clear (P = 0.003) and Implantlink Semi cement (P = 0.001). However, in the lithium disilicate group, Implantlink Semi cement was significantly more retentive than TempBond Clear (P = 0.019) and TempBond (control) (P = 0.001). The final color of both restorations was significantly affected by the provisional resin cement type. The retentive strength was influenced by both the type of cement and ceramic.


Subject(s)
Ceramics/chemistry , Color , Dental Abutments , Dental Prosthesis Retention/methods , Materials Testing/methods , Resin Cements/chemistry , Zirconium/chemistry , Cementation , Computer-Aided Design , Dental Porcelain/chemistry , Humans , Surface Properties
14.
Clin Exp Dent Res ; 8(1): 287-293, 2022 02.
Article in English | MEDLINE | ID: mdl-35015382

ABSTRACT

OBJECTIVES: This study aimed to evaluate the effect of different concentrations of titanium dioxide (TiO2 ) and copper oxide (CuO) nanoparticles on the water sorption and solubility of heat-cured polymethyl methacrylate (PMMA). MATERIALS AND METHODS: Fifty disc-shaped specimens (10 × 2 mm) of heat-cured PMMA were prepared and divided into five groups (n = 10) to be modified with 2.5 wt.% or 7.5 wt.% of either TiO2 or CuO nanoparticles. One group was left unmodified, serving as the control group. Water sorption and solubility were measured by weighing the specimens before and after immersion in distilled water and desiccation. The data were analyzed by using one-way ANOVA and Tukey's post hoc test (α = .05). RESULTS: The 2.5 wt.% CuO nanoparticles significantly decreased the water sorption (p = .016), but did not change the water solubility (p = .222) compared with the control group. The 7.5 wt.% CuO and both concentration of TiO2 nanoparticles did not change the water sorption, but significantly increased the solubility of heat-cured PMMA (p ≤ .05). CONCLUSION: Adding 2.5 wt.% CuO nanoparticles to heat-cured PMMA decreases the water sorption; although, it has no significant effect on the solubility. Likewise, 2.5 and 7.5 wt.% TiO2 and 7.5 wt.% CuO do not affect the water sorption, but increase the water solubility of heat-cured PMMA. CLINICAL SIGNIFICANCE: Reinforcing the heat-cured PMMA denture base resin materials with the right concentration and type of nanoparticles can decrease the water sorption of resin base materials, and consequently can influence the durability of dentures.


Subject(s)
Nanoparticles , Polymethyl Methacrylate , Copper , Denture Bases , Hot Temperature , Materials Testing , Solubility , Titanium , Water
15.
Curr Med Mycol ; 8(3): 23-29, 2022 Sep.
Article in English | MEDLINE | ID: mdl-37051555

ABSTRACT

Background and Purpose: The human mouth mucosal surface is colonized by indigenous microflora, which normally maintains an ecological balance among different species. However, certain environmental or biological factors may disrupt this balance, leading to microbial diseases. Candida albicans biofilms are formed on indwelling medical devices and have an association with both oral and invasive candidiasis. This study aimed to compare the amount of adherent C. albicans and the biofilm formed on different denture base materials. The adhesion of C. albicans to denture base materials is widely recognized as the main reason for the development of denture stomatitis. Materials and Methods: In total, 56 polymethyl methacrylate (PMMA) acrylic resin disc-shaped samples were divided into four groups as follows: 1) chemically polymerized PMMA, 2) heat-polymerized PMMA, 3) computer-aided design and computer-aided manufacturing (CAD/CAM) PMMA in high polish, and 4) CAD/CAM resins in glazed form. The adherent cells and formation of C. albicans strains (562, 1905, 1912, and 1949) biofilm were measured by the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) method and use of a microplate reader. Moreover, morphological alterations of C. albicans cells were investigated using scanning electron microscopy (SEM). Results: The biofilm formation was significantly lower on CAD/CAM acrylic resins, compared to conventional denture base materials. The obtained results were confirmed by the SEM images of C. albicans biofilms. CAD/CAM PMMA-based polymers may be preferable to inhibit C. albicans biofilm formation and reduce Candida-associated denture stomatitis in long-term use. Conclusion: Based on the findings, the CAD/CAM technique can be used as an efficient technique for denture fabrication as it inhibits microbial accumulation, and consequently, microbial biofilm.

16.
J Dent (Shiraz) ; 22(4): 252-259, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34904121

ABSTRACT

STATEMENT OF THE PROBLEM: Monolithic zirconia restoration has been introduced to overcome the porcelain chipping. Different factors can affect the color of monolithic zirconia, so achieving the desired color in the restorations is considered as a challenge. PURPOSE: The purpose of this in vitro study was to determine the effect of different foundation materials on the color of monolithic zirconia at different thicknesses. MATERIALS AND METHOD: In this experimental study, thirty ceramic disks in three thicknesses (i.e. 0.6mm, 1.1mm and 1.5mm) were fabricated from high translucency shade A2 monolithic zirconia block. Disk shaped foundation materials were fabricated from nickel chromium alloy (Ni-Cr), non-precious gold alloy (NPG), zirconia, and shade A2 composite resin. The color was measured by a spectrophotometer. The color differences (∆E) in the control and the test groups were calculated. The data were analyzed using two way ANOVA and compared with the posthoc Tukey test (a=0.05). RESULTS: Ceramic thickness and foundation materials had a significant effect on the mean values of ∆E of monolithic zirconia ceramics (p= 0.001). The highest amount of ∆E value was observed in NPG, while Ni-Cr resulted in the lowest ∆E. Unacceptable results (∆E>2.25) were observed for monolithic zirconia ceramics on NPG foundation material with a thicknesses of 0.6 and 1.1mm. The mean L* values of all foundation materials were higher than those of the control group except for Ni-Cr. The highest a* was seen in NPG and the mean b* values of all tested foundation materials were higher than those of the control group except for Ni-Cr. CONCLUSION: Increasing the thickness of monolithic zirconia decreased the color mismatch. High translucent monolithic zirconia could mask the color of Ni-Cr and zirconia in all three thicknesses (∆E<2.25), while it could not mask the color of NPG under thickness of 1.5mm.

17.
Int J Dent ; 2021: 8022430, 2021.
Article in English | MEDLINE | ID: mdl-34795763

ABSTRACT

AIMS: This in vitro study aimed to evaluate the effect of the degrees of translucency in different types of monolithic zirconia as well as the aging and surface treatment with airborne particle abrasion on the flexural strength of monolithic zirconia. MATERIALS AND METHODS: Sixty bar-shaped specimens were fabricated from three different types of presintered monolithic zirconia (n = 20 per group) including low translucent (LT) (DD Bio ZW iso, high strength zirconia, Dental Direkt, Germany), high translucent (HT) (DD Bio ZX2 98, high translucent zirconia, Dental Direkt, Germany), and multilayered system (ML) (DD cubeX2®ML, multilayer, cubic zirconia system, Dental Direkt, Germany). Each monolithic zirconia group was equally subdivided according to be either air-abraded with 110 µm aluminium oxide particles or left untreated (control). After thermocycling, the flexural strength was measured by using a universal testing machine. Two-way ANOVA followed by Tukey's post hoc and independent samples t-test were used for the statistical analyses (P < 0.05). RESULTS: Surface treatment and types of zirconia were found to have a significant interaction (P = 0.010). Having controlled the effect of surface treatment, the flexural strength of HT and LT zirconia was found to be significantly higher than the ML zirconia system (P ≤ 0.001). Airborne particle abrasion could significantly decrease the flexural strength of monolithic zirconia only in ML zirconia (P = 0.002). CONCLUSIONS: Multilayered zirconia system had the lowest flexural strength among all groups. Moreover, the flexural strength of this system was attenuated by surface treatment with airborne particles abrasion.

18.
Dent Res J (Isfahan) ; 18: 30, 2021.
Article in English | MEDLINE | ID: mdl-34322206

ABSTRACT

BACKGROUND: The flexural strength (FS) of a denture base material is of great concern, and many approaches have been used to strengthen the denture acrylic resins. The present study aimed to evaluate the effect of high-performance polymer (BioHPP) and metal mesh reinforcement on the FS of a heat-cured poly methyl methacrylate (PMMA) acrylic resin. MATERIALS AND METHODS: This experimental study was done on 30 rectangular specimens (64 mm × 13 mm × 3 mm) of a heat-cured PMMA resin. The specimens were divided into three groups (n = 10) to be reinforced with either metal mesh or BioHPP mesh; one group was left nonreinforced, serving as the control group. The FS of specimens was assessed through a 3-point bending test by using a universal testing machine at a crosshead speed of 2 mm/min. Kruskal-Wallis H and Dunn's post hoc tests were used to compare the FS among the groups (alpha = 0.05). RESULTS: The FS in the metal-reinforced group was statistically significantly higher than the two other groups (P < 0.001). However, the FS of the BioHPP-reinforced samples was not statistically significantly higher than the nonreinforced ones (P = 0.614). CONCLUSION: Reinforcing the PMMA with metal mesh significantly enhances its FS while BioHPP has no significant effect on the PMMA FS.

19.
J Dent (Shiraz) ; 22(2): 132-137, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34150950

ABSTRACT

STATEMENT OF THE PROBLEM: Retrieval of cement-retained implant-supported restorations is challenging in cases of screw loosening or periodontal problems. PURPOSE: The purpose of this study was to evaluate the effect of the screw access hole on the fracture resistance of zirconia-based cement-retained restorations with and without an access opening. MATERIALS AND METHOD: In this in vitro study thirty-three cement-retained implant-supported zirconia-based molar crowns were fabricated and divided into 3 groups (n=11). As the control group, group 1 consisted of conventional cement-retained crowns. Group 2 comprised conventional cement-retained crowns in which a hole was created in the location of the screw. Group 3 consisted of cement-retained crowns in which a ledge was created in the location of the screw access channel. The specimens were cemented to their abutments and their access openings were filled with composite resin. A compressive load was applied to the specimens using a universal testing machine until they fractured. The mean fracture resistance values of the samples were compared by using the one-way ANOVA and Tamhane post-hoc test (a=0.05). RESULTS: The mean fracture resistance values were 1270.18± 12.67 N in group 1 (the control group), 960.09±210.67 N in group 2 (conventional), and 1357.81±361.68 N in group 3 (the special design). The fracture resistance value was higher in the special design group than that of the conventional design (p= 0.018) and the fracture resistance value of the conventional design group was less than that of the control group (p= 0.042). No statistically significant difference was detected between the control group and the special design group in fracture resistance values. CONCLUSION: Preparing a screw access hole in cement-retained implant-supported zirconia-based crowns decreased the fracture resistance of the restoration. Designing a ledge in the zirconia framework around the access hole may increase the fracture resistance of the restoration.

20.
PLoS One ; 16(4): e0249551, 2021.
Article in English | MEDLINE | ID: mdl-33819292

ABSTRACT

Fabricating method may affect the surface properties and biological characteristics of provisional restorations. This study aimed to evaluate the surface roughness, plaque accumulation, and cytotoxicity of provisional restorative materials fabricated by the conventional, digital subtractive and additive methods. Sixty-six bar-shaped specimens (2×4×10 mm) were fabricated by using provisional restorative materials through the conventional, digital subtractive and additive methods (n = 22 per group). Ten specimens of each group were used for surface roughness and plaque accumulation tests, 10 specimens for cytotoxicity assay, and 2 specimens of each group were used for qualitative assessment by scanning electron microscopy. The Ra (roughness average) and Rz (roughness height) values (µm) were measured via profilometer, and visual inspection was performed through scanning electron microscopy. Plaque accumulation of Streptococcus mutans and cytotoxicity on human gingival fibroblast-like cells were evaluated. The data were analyzed with one-way ANOVA and Tukey's post hoc test (α = 0.05). Surface roughness, biofilm accumulation and cytotoxicity were significantly different among the groups (P<0.05). Surface roughness was significantly higher in the conventional group (P<0.05); however, the two other groups were not significantly different (P>0.05). Significantly higher bacterial attachment was observed in the additive group than the subtractive (P<0.001) and conventional group (P = 0.025); while, the conventional and subtractive groups were statistically similar (P = 0.111). Regarding the cytotoxicity, the additive group had significantly higher cell viability than the subtractive group (P = 0.006); yet, the conventional group was not significantly different from the additive (P = 0.354) and subtractive group (P = 0.101). Surface roughness was the highest in conventionally cured group; but, the additive group had the most plaque accumulation and lowest cytotoxicity.


Subject(s)
Biofilms/growth & development , Composite Resins/pharmacology , Dental Materials/pharmacology , Dental Plaque/prevention & control , Dental Restoration, Permanent/methods , Gingiva/drug effects , Streptococcus mutans/physiology , Cell Survival , Gingiva/pathology , Humans , Materials Testing , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...