Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 383(6681): 433-438, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38271503

ABSTRACT

Mutualisms often define ecosystems, but they are susceptible to human activities. Combining experiments, animal tracking, and mortality investigations, we show that the invasive big-headed ant (Pheidole megacephala) makes lions (Panthera leo) less effective at killing their primary prey, plains zebra (Equus quagga). Big-headed ants disrupted the mutualism between native ants (Crematogaster spp.) and the dominant whistling-thorn tree (Vachellia drepanolobium), rendering trees vulnerable to elephant (Loxodonta africana) browsing and resulting in landscapes with higher visibility. Although zebra kills were significantly less likely to occur in higher-visibility, invaded areas, lion numbers did not decline since the onset of the invasion, likely because of prey-switching to African buffalo (Syncerus caffer). We show that by controlling biophysical structure across landscapes, a tiny invader reconfigured predator-prey dynamics among iconic species.


Subject(s)
Ants , Equidae , Food Chain , Lions , Myrmecophytes , Symbiosis , Animals , Ants/physiology , Elephants , Buffaloes
2.
Ecology ; 103(5): e3655, 2022 05.
Article in English | MEDLINE | ID: mdl-35132627

ABSTRACT

Across the globe, biological invasions have disrupted mutualisms, producing reverberating consequences for ecosystems. Although invasive species frequently trigger mutualism disruptions, few studies have quantified the demographic mechanisms by which mutualism breakdown may generate population effects. In a Kenyan savanna, the invasive big-headed ant (Pheidole megacephala) has disrupted a foundational mutualism between the monodominant whistling-thorn tree (Acacia drepanolobium) and native ants (Crematogaster spp.) that deter browsing by large mammalian herbivores. We conducted experiments to quantify the demographic consequences of this mutualism disruption in the presence and absence of large mammalian herbivores. Invasion by P. megacephala exacerbated population declines of A. drepanolobium, primarily through decreased survival and reproduction of adult trees. However, these fitness reductions were small compared to those resulting from the presence of large mammalian herbivores, which negatively impacted growth and survival. Contrary to expectation, the expulsion of metabolically costly Crematogaster mutualists by P. megacephala did not result in higher population growth rates for trees protected from large mammalian herbivores. Our results suggest that invasive P. megacephala may impose a direct metabolic cost to trees exceeding that of native mutualists while providing no protection from browsing by large mammalian herbivores. Across landscapes, we expect that invasion by P. megacephala will reduce A. drepanolobium populations, but that the magnitude and demographic pathways of this effect will hinge on the presence and abundance of browsers.


Subject(s)
Acacia , Ants , Coleoptera , Animals , Demography , Ecosystem , Kenya , Mammals , Symbiosis , Trees
SELECTION OF CITATIONS
SEARCH DETAIL