Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nature ; 629(8014): 1091-1099, 2024 May.
Article in English | MEDLINE | ID: mdl-38750363

ABSTRACT

The baobab trees (genus Adansonia) have attracted tremendous attention because of their striking shape and distinctive relationships with fauna1. These spectacular trees have also influenced human culture, inspiring innumerable arts, folklore and traditions. Here we sequenced genomes of all eight extant baobab species and argue that Madagascar should be considered the centre of origin for the extant lineages, a key issue in their evolutionary history2,3. Integrated genomic and ecological analyses revealed the reticulate evolution of baobabs, which eventually led to the species diversity seen today. Past population dynamics of Malagasy baobabs may have been influenced by both interspecific competition and the geological history of the island, especially changes in local sea levels. We propose that further attention should be paid to the conservation status of Malagasy baobabs, especially of Adansonia suarezensis and Adansonia grandidieri, and that intensive monitoring of populations of Adansonia za is required, given its propensity for negatively impacting the critically endangered Adansonia perrieri.


Subject(s)
Adansonia , Phylogeny , Adansonia/classification , Adansonia/genetics , Biodiversity , Conservation of Natural Resources , Ecology , Endangered Species , Evolution, Molecular , Genome, Plant/genetics , Madagascar , Population Dynamics , Sea Level Rise
2.
Hortic Res ; 11(4): uhae038, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38595910

ABSTRACT

Cissus quadrangularis is a tetraploid species belonging to the Vitaceae family and is known for the Crassulacean acid metabolism (CAM) pathway in the succulent stem, while the leaves perform C3 photosynthesis. Here, we report a high-quality genome of C. quadrangularis comprising a total size of 679.2 Mb which was phased into two subgenomes. Genome annotation identified 51 857 protein-coding genes, while approximately 47.75% of the genome was composed of repetitive sequences. Gene expression ratios of two subgenomes demonstrated that the sub-A genome as the dominant subgenome played a vital role during the drought tolerance. Genome divergence analysis suggests that the tetraploidization event occurred around 8.9 million years ago. Transcriptome data revealed that pathways related to cutin, suberine, and wax metabolism were enriched in the stem during drought treatment, suggesting that these genes contributed to the drought adaption. Additionally, a subset of CAM-related genes displayed diurnal expression patterns in the succulent stems but not in leaves, indicating that stem-biased expression of existing genes contributed to the CAM evolution. Our findings provide insights into the mechanisms of drought adaptation and photosynthesis transition in plants.

3.
Plant Divers ; 46(1): 91-100, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38343590

ABSTRACT

Climate change poses a serious long-term threat to biodiversity. To effectively reduce biodiversity loss, conservationists need to have a thorough understanding of the preferred habitats of species and the variables that affect their distribution. Therefore, predicting the impact of climate change on species-appropriate habitats may help mitigate the potential threats to biodiversity distribution. Xerophyta, a monocotyledonous genus of the family Velloziaceae is native to mainland Africa, Madagascar, and the Arabian Peninsula. The key drivers of Xerophyta habitat distribution and preference are unknown. Using 308 species occurrence data and eight environmental variables, the MaxEnt model was used to determine the potential distribution of six Xerophyta species in Africa under past, current and future climate change scenarios. The results showed that the models had a good predictive ability (Area Under the Curve and True Skill Statistics values for all SDMs were more than 0.902), indicating high accuracy in forecasting the potential geographic distribution of Xerophyta species. The main bioclimatic variables that impacted potential distributions of most Xerophyta species were mean temperature of the driest quarter (Bio9) and precipitation of the warmest quarter (Bio18). According to our models, tropical Africa has zones of moderate and high suitability for Xerophyta taxa, which is consistent with the majority of documented species localities. The habitat suitability of the existing range of the Xerophyta species varied based on the climate scenario, with most species experiencing a range loss greater than the range gain regardless of the climate scenario. The projected spatiotemporal patterns of Xerophyta species help guide recommendations for conservation efforts.

4.
Environ Toxicol Chem ; 42(10): 2105-2118, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37377343

ABSTRACT

Studies investigating microplastics, pharmaceuticals, and pesticides as contaminants of emerging concern (CECs) in surface water sources in Kenya are reviewed. Contaminants of emerging concern are chemicals that have recently been discovered that may pose a threat to the environment, aquatic life, and human life. Microplastics in surface waters range from 1.56 to as high as 4520 particles/m3 , with high concentrations recorded in coastal waters. The dominant microplastics are fibers, fragments, and films, with foams, granules, and pellets making up only a small percentage. The main source of pharmaceuticals in water sources is not wastewater-treatment plants but rather raw untreated sewage because high concentrations are found near informal settlements with poor sewage connectivity. Antibiotics are detected in the range of the limit of quantification to 320 µg/L, with sulfamethoxazole, trimethoprim, and ciprofloxacin being the most abundant antibiotics. The high frequency of detection is attributed to the general misuse of antibiotics in the country. A health risk assessment indicated that only ciprofloxacin and acetaminophen posed noncarcinogenic health risks in the Ndarugo River and Mombasa periurban creeks, respectively. Similarly, the detection of antiretroviral drugs, mainly lamivudine, nevirapine, and zidovudine, is associated with human immunodeficiency virus prevalence in Kenya. In the Lake Naivasha, Nairobi River, and Lake Victoria basins, frequently detected organochloride pesticides (OCPs) are methoxychlor, alachlor, endrin, dieldrin, endosulfan, endosulfan sulfate, α-hexachlorocyclohexane (α-HCH), γ-HCH, and dichlorodiphenyltrichloroethane (DDT), some of which occur above permissible concentrations. The presence of DDT in some sites translates to illegal use or historical application. The majority of individual OCPs posed no noncarcinogenic health risk, except dieldrin and aldrin which had a hazard quotient >1 in two sites. Therefore, more surveying and regular monitoring in different regions in Kenya concerning CECs is essential to determine the spatial variability and effective measures to be taken to reduce pollution. Environ Toxicol Chem 2023;42:2105-2118. © 2023 SETAC.

5.
J Ethnopharmacol ; 303: 115895, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36513263

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Plants have been used in various parts of the world to treat various diseases. The genus Zanthoxylum L. (Rutaceae) is the second largest genus of this family and comprises approximately 225-549 species distributed in the tropical and temperate regions of the world. Plants of this genus are trees and shrubs with various applications in folklore medicine for food, medicine, construction, and other uses. AIM OF THE REVIEW: The goal of this review is to give an updated data on the ethnobotanical applications, phytochemistry, and pharmacology of the Zanthoxylum species to investigate their medicinal potential and identify research gaps for future research studies. MATERIALS AND METHODS: Data was obtained through a systematic search of published literature and online databases such as Google Scholar, Web of Science, PubMed, Science Direct, and Sci-Finder. The botanical names were confirmed using the World Flora Online and chemical structures were drawn using the ChemBio Draw Ultra Version 14.0 Software. RESULTS: The Zanthoxylum species have a wide use in different parts of the continents as a remedy for various diseases such as digestive diseases, gastrointestinal disorders, venereal diseases, respiratory diseases, rheumatism, bacterial diseases, viral, and other diseases. Various parts of the plant comprising fruits, seeds, twigs, leaves, oils, and stems are administered singly or in the form of decoction, infusion, powder, paste, poultice, juice, or mixed with other medicinal plants to cure the disease. More than 400 secondary metabolites have been isolated and characterized in this genus with various biological activities, which comprise alkaloids, flavonoids, coumarins, lignans, alcohols, fatty acids, amides, sesquiterpenes, monoterpenes, and hydrocarbons. The crude extracts, fractions, and chemical compounds isolated from the genus have demonstrated a wide range of biological activities both in vivo and in vitro, including; anti-cancer, antimicrobial, anti-sickling, hepatoprotective, antipyretic, antitumor, and other pharmacological activities. CONCLUSION: This genus has demonstrated an array of phytoconstituents with therapeutic potential. The ethnobotanical uses of this genus have been confirmed in modern pharmacological research. This genus is a potential source for modern drug discovery and health care products. Further and extensive research is therefore required on the safety approval and therapeutic application of the species of this genus as well as clinical trials and pharmacokinetic studies.


Subject(s)
Rutaceae , Zanthoxylum , Ethnopharmacology , Phytotherapy , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytochemicals/chemistry , Ethnobotany , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry
6.
Hortic Res ; 9: uhac208, 2022.
Article in English | MEDLINE | ID: mdl-36467268

ABSTRACT

Cissus is the largest genus in Vitaceae and is mainly distributed in the tropics and subtropics. Crassulacean acid metabolism (CAM), a photosynthetic adaptation to the occurrence of succulent leaves or stems, indicates that convergent evolution occurred in response to drought stress during species radiation. Here we provide the chromosomal level assembly of Cissus rotundifolia (an endemic species in Eastern Africa) and a genome-wide comparison with grape to understand genome divergence within an ancient eudicot family. Extensive transcriptome data were produced to illustrate the genetics underpinning C. rotundifolia's ecological adaption to seasonal aridity. The modern karyotype and smaller genome of C. rotundifolia (n = 12, 350.69 Mb/1C), which lack further whole-genome duplication, were mainly derived from gross chromosomal rearrangements such as fusions and segmental duplications, and were sculpted by a very recent burst of retrotransposon activity. Bias in local gene amplification contributed to its remarkable functional divergence from grape, and the specific proliferated genes associated with abiotic and biotic responses (e.g. HSP-20, NBS-LRR) enabled C. rotundifolia to survive in a hostile environment. Reorganization of existing enzymes of CAM characterized as diurnal expression patterns of relevant genes further confer the ability to thrive in dry savannas.

7.
PhytoKeys ; 191: 1-158, 2022.
Article in English | MEDLINE | ID: mdl-35437383

ABSTRACT

Taita Hills forests are an ecological island within the Tsavo plains and are the northern-most part of the Eastern Arc Mountains in southeast Kenya. They are highly fragmented forests embedded in a mosaic of human settlements and farms on the slopes and hilltops. Despite their intensive degradation, they exhibit a high degree of plant diversity and endemism, and therefore are regarded as a biodiversity hotspot. In spite of their distinct importance to the biodiversity of the region as well as supporting the livelihoods of the surrounding communities, floristic studies in these hills have been finite. Through repetitive floral expeditions, herbarium records from the East African Herbarium (EA), Global Biodiversity Information (GBIF), and the Integrated Digitized Biocollections (iDigbio) databases, as well as plant lists from literature and monographs, we provide a comprehensive checklist of 1594 taxa representing 159 families, 709 genera, 1530 species, 39 subspecies, 27 varieties, and 2 hybrids. Out of these, 75 are endemic or near-endemic, 59 are exotic, and 83 are listed as either endangered or near endangered as evaluated in the IUCN Redlist. Zehneriatuberifera G.W.Hu & Q.F.Wang, a new species to science, which has previously been described, was also discovered from the Ngangao forest fragment. Information on the habit(s), habitat(s), and altitudinal range of each taxon is provided in this study. This checklist is an updated inventory of the vascular plants of the Taita Hills. It confirms the high plant diversity of the hills and provides a clear baseline for strategic conservation and sustainable management of plant resources and diversity under the Convention on Biological Diversity (CBD).

8.
J Ethnopharmacol ; 292: 115102, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35288288

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Sambucus L. (Viburnaceae) consists of about 29 recognized species distributed in all regions of the world except the extremely cold and desert areas. Some species have been used as traditional medicines to treat various disorders such as bone fractures, rheumatism, diabetes, respiratory and pulmonary disorders, skin diseases, inflammatory ailments, diarrhea, and others. However, the currently available data on traditional and pharmacological uses have not been comprehensively reviewed. STUDY AIM: The present review is designed to provide information on the ethnobotanical uses, phytochemistry, toxicity, and the known biological properties of Sambucus, to understand their connotations and provide a scientific basis and gaps for further research. MATERIALS AND METHODS: The information was obtained from different bibliographic databases, Google Scholar, Springer Link, Web of Science, PubMed, and Science Direct along with other literature sources such as dissertation before August 2021. The scientific names were validated using The Plant List and World Flora Online websites. RESULTS: Twelve Sambucus species were found to be frequently mentioned in ethnomedical uses recorded in China, Korea, Turkey, Iran, and other countries. Traditionally, they have been used as remedies to numerous health complications among others, bone fractures and rheumatism, diabetes, wounds, inflammatory diseases, diarrhea, menstrual pains, respiratory and pulmonary complaints, skin disorders, headaches, snakebites, and urinary tract infections. To date, only eleven species have been studied for their chemical compounds and a total of 425 bioactive constituents, including phenolic compounds, terpenoids, fatty acids, cyanogenic glycosides, phytosterols, lectins, organic acids, alkaloid, coumarin, anthraquinone, and others have been reported. The crude extracts and the isolated chemical constituents exhibited diverse outstanding pharmacological activities including antioxidant, antimicrobial, antidiabetic, anti-inflammatory, antidepressant, analgesic, anti-giardial, immunomodulatory, scolicidal, anti-ulcerogenic, antiradical, bone-protective, anti-glycemic, antiosteoporotic, hypolipidemic, anti-glycation, and wound-healing properties. CONCLUSION: This study summarized and scrutinized the data on traditional uses, pharmacological activities, phytochemicals, and toxicity of Sambucus species, which indicate they have interesting chemical compounds with diverse biological activities. Many traditional uses of some species from this genus have now been confirmed by pharmacological activities, such as antioxidant, antimicrobial, bone-protective, wound healing, anti-inflammatory, and analgesic properties. However, the currently available data has several gaps in understanding the traditional uses of all Sambucus species. Thus, we strongly recommend further investigations into the scientific connotations between traditional medicinal uses and pharmacological activities, mode of action of the isolated bioactive constituents, and toxicity of other Sambucus species to unravel their efficacy and therapeutic potential for safe clinical application. The current extensive study avails valuable information on therapeutic use of Sambucus species and paves way for further investigations of other useful species, as well as drug discovery.


Subject(s)
Anti-Infective Agents , Fractures, Bone , Rheumatic Diseases , Sambucus , Analgesics , Antioxidants , Diarrhea/drug therapy , Ethnobotany , Ethnopharmacology , Humans , Phytochemicals/chemistry , Phytochemicals/toxicity , Phytotherapy , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Rheumatic Diseases/drug therapy
9.
J Ethnopharmacol ; 284: 114781, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34715298

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Genus Fagaropsis belonging to the Rutaceae family, is widely distributed in Africa. The various parts of the species in this genus are used in traditional herbal medicine in different parts of the continent for the treatment of malaria, intestinal disorders, cancer, respiratory diseases, and other ailments. AIM OF THE STUDY: This study provides a comprehensive and updated review on the ethnobotanical uses, phytochemistry, and pharmacology of Fagaropsis species and highlights possible research gaps for further research opportunities, which will be important in the development of new therapeutic drugs. MATERIALS AND METHODS: The data was retrieved using ethnobotanical books, published articles, electronic sources, and scientific databases such as Google Scholar, Plants of the World, The Plant List, Scopus, Wiley, Web of Science, PubMed, Science direct, and Sci-Finder. Various key search words Fagaropsis, pharmacological activities, phytochemistry, and ethnobotanical uses were used in the detailed study survey. RESULTS: Fagaropsis species are used traditionally to treat a wide range of infections such as respiratory diseases, cancer, malaria, intestinal diseases, and ethnoveterinary. Phytochemical investigations indicated 18 phytoconstituents that have been isolated as the main compounds in this genus; triterpenoids (limonoids, norhopane, and norneohopane derivatives), alkaloids, and essential oils. Few in vitro and in vivo pharmacological activities have been analyzed in this genus. They indicated that the extracts and pure compounds contained anti-inflammatory, antiplasmodial, anti-cancer, anti-bacterial, anti-fungal, and insecticidal activities. The phytochemical compounds that may be responsible for these activities are flavonoids, terpenoids, and alkaloids. CONCLUSION: The ethnobotanical values, phytochemistry, and pharmacology discussed in this review paper showed that Fagaropsis species contain different compounds possessing a wide range of biological activities, and they have high medicinal value that is significant in treating different types of diseases. Phytochemical analyses have been performed on two species (F. angolensis and F. glabra) in the literature. More scientific research analyses are still required to explore this genus. In addition, the majority of the currently available bioactivity-related analyses were applied to crude extracts. Thus, further research studies are important to reveal the links between ethnobotanical uses and bioactivity in the future.


Subject(s)
Medicine, African Traditional , Phytochemicals , Phytotherapy , Rutaceae/chemistry , Animals , Ethnopharmacology , Humans , Plants, Medicinal
10.
J Environ Manage ; 297: 113410, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34346396

ABSTRACT

This study evaluates water quality, concentrations and health risks of heavy metals (HMs) in eight major lakes in Kenya namely Naivasha, Elementaita, Nakuru, Baringo, Bogoria, Turkana, Victoria and Magadi. Water quality was assessed using water quality index (WQI) and pollution evaluation index (PEI), while human health risk associated with ingestion and dermal contact of HMs was assessed using hazard quotients (HQ) and hazard index (HI). Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to deduce the probable sources of the HMs. The average concentration of aluminium (Al), molybdenum (Mo), manganese (Mn), nickel (Ni), arsenic (As), zinc (Zn), selenium (Se), lead (Pb), chromium (Cr), mercury (Hg), cobalt (Co) and cadmium (Cd) in the eight lakes was 824.6, 66.1, 58.9, 16.2, 8.40, 7.84, 6.91, 4.65, 2.66, 0.86, 0.78 and 0.46, respectively, all in µg/L. Al, Mn, As, and Mo were relatively high in Rift Valley lakes and exceeded the maximum permissible levels for drinking water. Notably, high HM concentrations were recorded at the entry points of rivers and areas with high human activities. Lake Magadi had the highest average WQI of 158.8 followed by lake Elementaita (128.4), Bogoria (79.5), Nakuru (73.3), Turkana (57.6), Victoria (52.3), Baringo (42.6) and Naivasha (25.5). Lake Magadi also had the highest average PEI of 40.0 followed by Elementaita (30.1), Bogoria (16.2), Nakuru (15.7), Victoria (10.8), Baringo (9.57), Turkana (9.53) and Naivasha (5.12). Based on WQI, Lake Naivasha water was excellent for drinking, Lake Victoria, Turkana, Baringo, Nakuru, and Bogoria had good water, but water from Lake Elementaita and Magadi was of poor quality. PEI classified the lakes as minimally polluted except Lake Magadi. Multivariate analysis concluded that Pb, Cr, Ni and Se had anthropogenic sources, mainly agricultural and urban runoff, but other HMs had natural influence. Although the HMs did not pose any health risks through dermal contact, HQingestion was >1 for adults and children consuming water from Lake Elementaita, Nakuru, Bogoria and Magadi due to non-carcinogenic risks associated with As, Zn and Mo. These results are important for formulating the necessary remediation policies to improve water quality in the eight lakes.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adult , Child , China , Environmental Monitoring , Humans , Kenya , Lakes , Metals, Heavy/analysis , Multivariate Analysis , Risk Assessment , Water Pollutants, Chemical/analysis , Water Quality
11.
Environ Sci Pollut Res Int ; 28(46): 66012-66025, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34327642

ABSTRACT

Contamination of nine heavy metals (HMs) Zn, Pb, Cu, Cd, As, Co, Cr, Mo, and Ni in agricultural, urban, and wetland soils from Western and Rift Valley parts of Kenya was assessed using improved weighted index (IWI) and pollution loading index (PLI). Non-carcinogenic risks posed by the HMs were assessed using hazard quotients (HQ) and hazard index (HI), while carcinogenic risks were assessed using cancer risks (CR) and total cancer risks (TCR). The average concentration of Zn, Cr, Ni, Pb, Co, Cu, As, Mo, and Cd was 94.7 mg/kg, 43.6 mg/kg, 22.3 mg/kg, 21.0 mg/kg, 19.8 mg/kg, 18.0 mg/kg, 16.3 mg/kg, 1.83 mg/kg, and 1.16 mg/kg, respectively. IWI ranged from 0.57 to 6.04 and categorized 6.82% of the study sites as not polluted, 27.3% as slightly polluted, 43.2% as moderately polluted, and 22.7% as seriously polluted. PLI ranged from 0.38 to 3.95 and classified 15.9% of the sites as not polluted, 61.4% as slightly polluted, 20.5% as moderately polluted, and only 2.3% as seriously polluted. Wetlands retained more HMs from both urban and agricultural runoff and were therefore the most polluted. The heavy metals did not pose any risks via inhalation and dermal contact, but HQingestion for As for children was >1 in 2.3% of the sites studied. CR via ingestion and TCR for As were above the allowable limits for children and adults indicating high risks of cancer. Intensive agriculture and urbanization should be closely monitored to prevent further HM pollution.


Subject(s)
Metals, Heavy , Soil Pollutants , Adult , Agriculture , Child , China , Environmental Monitoring , Humans , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis , Wetlands
12.
Front Plant Sci ; 12: 691833, 2021.
Article in English | MEDLINE | ID: mdl-34194461

ABSTRACT

Acanthochlamys P.C. Kao is a Chinese endemic monotypic genus, whereas Xerophyta Juss. is a genus endemic to Africa mainland, Arabian Peninsula and Madagascar with ca.70 species. In this recent study, the complete chloroplast genome of Acanthochlamys bracteata was sequenced and its genome structure compared with two African Xerophyta species (Xerophyta spekei and Xerophyta viscosa) present in the NCBI database. The genomes showed a quadripartite structure with their sizes ranging from 153,843 bp to 155,498 bp, having large single-copy (LSC) and small single-copy (SSC) regions divided by a pair of inverted repeats (IR regions). The total number of genes found in A. bracteata, X. spekei and X. viscosa cp genomes are 129, 130, and 132, respectively. About 50, 29, 28 palindromic, forward and reverse repeats and 90, 59, 53 simple sequence repeats (SSRs) were found in the A. bracteata, X. spekei, and X. viscosa cp genome, respectively. Nucleotide diversity analysis in all species was 0.03501, Ka/Ks ratio average score was calculated to be 0.26, and intergeneric K2P value within the Order Pandanales was averaged to be 0.0831. Genomic characterization was undertaken by comparing the genomes of the three species of Velloziaceae and it revealed that the coding regions were more conserved than the non-coding regions. However, key variations were noted mostly at the junctions of IRs/SSC regions. Phylogenetic analysis suggests that A. bracteata species has a closer genetic relationship to the genus Xerophyta. The present study reveals the complete chloroplast genome of A. bracteata and gives a genomic comparative analysis with the African species of Xerophyta. Thus, can be useful in developing DNA markers for use in the study of genetic variabilities and evolutionary studies in Velloziaceae.

13.
Environ Monit Assess ; 192(3): 167, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32030474

ABSTRACT

Mountains are the preferred sites for studying long-range atmospheric transportation and deposition of heavy metals, due to their isolation and steep temperature decrease that favors cold trapping and condensation of particulate forms of heavy metals. Any enrichment of heavy metals in mountains is presumed to primarily occur through atmospheric deposition. In this particular study, we assessed the status of 27 subsurface soils collected along two elevation gradients of Mt. Kenya using enrichment factors (EFs) as the ecological risk assessments. The collected soils were analyzed for total organic carbon, zinc (Zn), iron (Fe), manganese (Mn), and copper (Cu). The mean concentration of Mn, Fe, Zn, and Cu was 0.376 mg/kg, 47.6 mg/kg, 12.3 mg/kg, and 4.88 mg/kg in Chogoria and 0.560 mg/kg, 113 mg/kg, 12.7 mg/kg, and 2.70 mg/kg in Naro Moru respectively. These concentrations were below the US-EPA maximum permissible levels for soils, implying that the levels recorded had low toxicity. Meanwhile, the mean enrichment factors for Mn, Cu, and Zn were 0.447, 131, and 78.8 in Chogoria and 0.463, 38.9, and 53.0 in Naro Moru respectively. This implied that Zn and Cu in Chogoria sites were extremely enriched, while in Naro Moru, enrichment levels ranged from significant to extreme. However, Mn was found to have minimal enrichment in all the sites. Lower montane forest and bamboo zone recorded relatively high enrichment due to distance from source of pollution. Ericaceous zone also had high mean enrichment due to influence of wind which favors higher deposition at mid-elevations.


Subject(s)
Copper , Manganese , Metals, Heavy , Soil Pollutants , Zinc , Copper/analysis , Environmental Monitoring , Kenya , Manganese/analysis , Soil , Soil Pollutants/analysis , Tanzania , Zinc/analysis
14.
Plant Divers ; 42(6): 479-487, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33733015

ABSTRACT

Rural communities in Kenya largely depend on plant resources for their livelihood. The utilization of these resources depends on the availability of plant resources and the level of knowledge of the residents. We conducted an ethnobotanical study in Tharaka-Nithi County in Kenya to determine the knowledge and utilization of various plant species by the local communities. The study was conducted in four major administrative regions from June 2018 to February 2019, involving interview schedules using semi-structured open-ended questionnaires and guided field collections with 48 informants. A total of 214 plant species distributed in 73 families and 169 genera with 616 Use Reports (URs) were documented. Fabaceae was the highest family cited by the informants (31 species) followed by Lamiaceae and Euphorbiaceae (each with 11 species). Trees (49%) and shrubs (32%) were the top life forms of the plants frequently utilized by the local residents. The general plant uses reported were medicinal, food, fodder, construction, fuel, pesticidal, religious, live fencing, and making crafts. Zanthoxylum gilletii, Prunus africana, and Solanum incanum were found to be highly valued by the local communities. Plant utilization as food and medicinal uses against snake-bite related problems had the highest Informant Consensus Factor (ICF). Only 29 (13.6%) of the species reported had their status assessed by the International Union for Conservation of Nature (IUCN). Conservation measures, alongside awareness creation in this region, are highly recommended for the species endemic to the region, highly depended on by the community, and those threatened according to IUCN standards.

15.
Mitochondrial DNA B Resour ; 5(1): 100-101, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-33366441

ABSTRACT

The complete chloroplast genome sequence of Xerophyta spekei Baker was reported in this study. The complete chloroplast genome showed a stereotypical quadripartite structure as observed in other angiosperms with a length of 155,235 bp and divided into four parts; a pair of IRs (27,109 bp) which is separated by a small single copy (SSC) region (17,388 bp) and a large single copy (LSC) region (83,629bp). The chloroplast genome had 132 genes, including 85 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. Seven protein-coding genes were identified to have RNA editing.

16.
J Environ Manage ; 231: 576-581, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30388655

ABSTRACT

Current study was conducted to assess remediation efficiency of heavy metals in Thika waste water treatment plant, human health risk posed by consumption of vegetables irrigated with its reclaimed waste water, and vegetables supplied at Makongeni market. Concentration of Cu, Zn, Cr, Ni and Pb was investigated in the sludge, waste water and vegetables, spinach (Spinacea oleracea), kales (Brassica oleracea var. acephala) and coriander (Coriandrum sativum). Thika waste water treatment plant was efficient in heavy metal remediation. Effluent heavy metal concentration was within recommended concentration for irrigation. Dietary intake of heavy metals and target hazard quotient were used to evaluate health risk posed to consumers. Heavy metals concentrations of vegetables sampled and analyzed were within world health organization permissible limit. Thika waste water treatment plant was found to be efficient; however, regular dredging is essential to reduce accumulated heavy metals in the sludge. Moreover, the study outcome revealed that besides reclaimed waste water that may be perceived to pose great health risk to consumers, the whole food production and distribution chain should be monitored to guarantee food safety.


Subject(s)
Metals, Heavy , Soil Pollutants , Environmental Monitoring , Food Contamination , Humans , Kenya , Risk Assessment , Vegetables , Wastewater
17.
Environ Monit Assess ; 189(9): 454, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28815343

ABSTRACT

Nairobi River tributaries are the main source of the Athi River. The Athi River basin is the fourth largest and important drainage system in Kenya covering 650 km and with a drainage area of 70,000 km2. Its water is used downstream by about four million people not only for irrigation but also for domestic purposes. However, its industrial, raw sewer, and agricultural pollution is alarming. In order to understand distribution and concentration of heavy metals and nutrients in the water of Nairobi River, 28 water samples were collected in the rainy season (October) of 2015 and dry season (June) of 2016. Cd, Cu, Cr, Zn, As, Pb, Fe, Ni, Mn, NO3-, and TP were analyzed. Only Cr, Pb, Fe, and Mn had concentrations exceeding the WHO permissible limit for drinking water. Out of the 28 sites examined in the study, one site had Pb exceeding the WHO recommended level. Similarly, three sites exceeded the same level for Cr. Only three sites were within the WHO permissible limits for drinking water for Mn while just four sites were within USEPA limit for Fe. Industrial effluent, domestic sewerage, agricultural activities, and solid waste were the main sources of pollution. Significant spatial variation of both heavy metals and nutrients concentration was observed and emanated from point source pollution. Eleven out of 31 macrophytes species that were identified along the river and its tributaries are effective heavy metal and nutrient bioaccumulators and may be used in phytoremediation.


Subject(s)
Environmental Monitoring , Metals, Heavy/analysis , Water Pollutants/analysis , Agriculture , Kenya , Nitrogen/analysis , Phosphorus/analysis , Rivers/chemistry , Seasons
18.
PLoS One ; 8(4): e60948, 2013.
Article in English | MEDLINE | ID: mdl-23565290

ABSTRACT

BACKGROUND: The Qinghai-Tibetan Plateau (QTP) is one of the most extensive habitats for alpine plants in the world. Climatic oscillations during the Quaternary ice age had a dramatic effect on species ranges on the QTP and the adjacent areas. However, how the distribution ranges of aquatic plant species shifted on the QTP in response to Quaternary climatic changes remains almost unknown. METHODOLOGY AND PRINCIPAL FINDINGS: We studied the phylogeography and demographic history of the widespread aquatic herb Hippuris vulgaris from the QTP and adjacent areas. Our sampling included 385 individuals from 47 natural populations of H. vulgaris. Using sequences from four chloroplast DNA (cpDNA) non-coding regions, we distinguished eight different cpDNA haplotypes. From the cpDNA variation in H. vulgaris, we found a very high level of population differentiation (G ST = 0.819) but the phylogeographical structure remained obscure (N ST = 0.853>G ST = 0.819, P>0.05). Phylogenetic analyses revealed two main cpDNA haplotype lineages. The split between these two haplotype groups can be dated back to the mid-to-late Pleistocene (ca. 0.480 Myr). Mismatch distribution analyses showed that each of these had experienced a recent range expansion. These two expansions (ca. 0.12 and 0.17 Myr) might have begun from the different refugees before the Last Glacial Maximum (LGM). CONCLUSIONS/SIGNIFICANCE: This study initiates a research on the phylogeography of aquatic herbs in the QTP and for the first time sheds light on the response of an alpine aquatic seed plant species in the QTP to Quaternary climate oscillations.


Subject(s)
DNA, Chloroplast/genetics , Plants/genetics , China , Ecosystem , Haplotypes , Phylogeography , Plants/classification
19.
Mol Phylogenet Evol ; 67(1): 38-42, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23333736

ABSTRACT

Alismatidae is a wetland or aquatic herb lineage of monocots with a cosmopolitan distribution. Although considerable progress in systematics and biogeography has been made in the past several decades, geographical origin of this group remains unresolved. In this study, we used statistical dispersal-vicariance analysis implemented in program RASP to investigate the biogeography of Alismatidae. Six areas of endemism were used to describe the distribution: North America, South America, Eurasia, Africa, Southeast Asia and Australia. 18,000 trees retained from Bayesian inference of rbcL served as a framework to reconstruct the ancestral areas. The results suggested that the most recent common ancestor of Alismatidae most probably occurred in Eurasia, followed by a split into two major clades. The clade comprising Hydrocharitaceae, Butomaceae and Alismataceae mainly diversified in Eurasia and Africa. The other clade comprising the remaining families dispersed to southern hemisphere. Australia played an important role in diversification of this clade. Several families were suggested to have occurred in Australia, such as Ruppiaceae, Cymodoceaceae, Posidoniaceae and Zosteraceae.


Subject(s)
Alismatales/classification , Alismatales/genetics , Asia , Australia , Bayes Theorem , DNA, Plant/genetics , Europe , Geography , Models, Genetic , Phylogeography , Sequence Alignment , Sequence Analysis, DNA
20.
BMC Evol Biol ; 12: 30, 2012 Mar 10.
Article in English | MEDLINE | ID: mdl-22404786

ABSTRACT

BACKGROUND: Hydrocharitaceae is a fully aquatic monocot family, consists of 18 genera with approximately 120 species. The family includes both fresh and marine aquatics and exhibits great diversity in form and habit including annual and perennial life histories; submersed, partially submersed and floating leaf habits and linear to orbicular leaf shapes. The family has a cosmopolitan distribution and is well represented in the Tertiary fossil record in Europe. At present, the historical biogeography of the family is not well understood and the generic relationships remain controversial. In this study we investigated the phylogeny and biogeography of Hydrocharitaceae by integrating fossils and DNA sequences from eight genes. We also conducted ancestral state reconstruction for three morphological characters. RESULTS: Phylogenetic analyses produced a phylogeny with most branches strongly supported by bootstrap values greater than 95 and Bayesian posterior probability values of 1.0. Stratiotes is the first diverging lineage with the remaining genera in two clades, one clade consists of Lagarosiphon, Ottelia, Blyxa, Apalanthe, Elodea and Egeria; and the other consists of Hydrocharis-Limnobium, Thalassia, Enhalus, Halophila, Najas, Hydrilla, Vallisneria, Nechamandra and Maidenia. Biogeographic analyses (DIVA, Mesquite) and divergence time estimates (BEAST) resolved the most recent common ancestor of Hydrocharitaceae as being in Asia during the Late Cretaceous and Palaeocene (54.7-72.6 Ma). Dispersals (including long-distance dispersal and migrations through Tethys seaway and land bridges) probably played major roles in the intercontinental distribution of this family. Ancestral state reconstruction suggested that in Hydrocharitaceae evolution of dioecy is bidirectional, viz., from dioecy to hermaphroditism, and from hermaphroditism to dioecy, and that the aerial-submerged leaf habit and short-linear leaf shape are the ancestral states. CONCLUSIONS: Our study has shed light on the previously controversial generic phylogeny of Hydrocharitaceae. The study has resolved the historical biogeography of this family and supported dispersal as the most likely explanation for the intercontinental distribution. We have also provided valuable information for understanding the evolution of breeding system and leaf phenotype in aquatic monocots.


Subject(s)
Biological Evolution , Hydrocharitaceae/classification , Hydrocharitaceae/genetics , Phylogeny , Fossils , Genes, Plant/genetics , Phylogeography
SELECTION OF CITATIONS
SEARCH DETAIL
...