Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 390, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910175

ABSTRACT

Microalgae are gaining attention as they are considered green fabrics able to synthesize many bioactive metabolites, with unique biological activities. However, their use at an industrial scale is still a challenge because of the high costs related to upstream and downstream processes. Here, a biorefinery approach was proposed, starting from the biomass of the green microalga Pseudococcomyxa simplex for the extraction of two classes of molecules with a potential use in the cosmetic industry. Carotenoids were extracted first by an ultrasound-assisted extraction, and then, from the residual biomass, lipids were obtained by a conventional extraction. The chemical characterization of the ethanol extract indicated lutein, a biosynthetic derivative of α-carotene, as the most abundant carotenoid. The extract was found to be fully biocompatible on a cell-based model, active as antioxidant and with an in vitro anti-aging property. In particular, the lutein-enriched fraction was able to activate Nrf2 pathway, which plays a key role also in aging process. Finally, lipids were isolated from the residual biomass and the isolated fatty acids fraction was composed by palmitic and stearic acids. These molecules, fully biocompatible, can find application as emulsifiers and softener agents in cosmetic formulations. Thus, an untapped microalgal species can represent a sustainable source for cosmeceutical formulations. KEY POINTS: • Pseudococcomyxa simplex has been explored in a cascade approach. • Lutein is the main extracted carotenoid and has antioxidant and anti-aging activity. • Fatty acids are mainly composed of palmitic and stearic acids.


Subject(s)
Cosmetics , Microalgae , Microalgae/metabolism , Microalgae/chemistry , Cosmetics/chemistry , Carotenoids/chemistry , Carotenoids/isolation & purification , Biomass , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Lutein/isolation & purification , Lutein/chemistry , Lutein/metabolism , Humans , Fatty Acids/chemistry
2.
Antioxidants (Basel) ; 12(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36829897

ABSTRACT

Microalgae can represent a reliable source of natural compounds with different activities. Here, we evaluated the antioxidant and anti-inflammatory activity of sulfated exopolysaccharides (s-EPSs) and phycoerythrin (PE), two molecules naturally produced by the red marine microalga Porphyridium cruentum (CCALA415). In vitro and cell-based assays were performed to assess the biological activities of these compounds. The s-EPSs, owing to the presence of sulfate groups, showed biocompatibility on immortalized eukaryotic cell lines and a high antioxidant activity on cell-based systems. PE showed powerful antioxidant activity both in vitro and on cell-based systems, but purification is mandatory for its safe use. Finally, both molecules showed anti-inflammatory activity comparable to that of ibuprofen and helped tissue regeneration. Thus, the isolated molecules from microalgae represent an excellent source of antioxidants to be used in different fields.

3.
ACS Sustain Chem Eng ; 11(1): 381-389, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36643001

ABSTRACT

Here, an unprecedented biorefinery approach has been designed to recover high-added value bioproducts starting from the culture ofPorphyridium cruentum. This unicellular marine red alga can secrete and accumulate high-value compounds that can find applications in a wide variety of industrial fields. 300 ± 67 mg/L of exopolysaccharides were obtained from cell culture medium; phycoerythrin was efficiently extracted (40% of total extract) and isolated by single chromatography, with a purity grade that allowed the crystal structure determination at 1.60 Å; a twofold increase in ß-carotene yield was obtained from the residual biomass; the final residual biomass was found to be enriched in saturated fatty acids. Thus, for the first time, a complete exploitation ofP. cruentumculture was set up.

SELECTION OF CITATIONS
SEARCH DETAIL
...