Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(3): 3217-3228, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38284018

ABSTRACT

Bitumen is heated at high temperatures during asphalt paving applications. In these circumstances, there is the possibility for fuming. These fumes can vary in intensity and, if significant, may attract complaints. The bitumen's chemical composition depends on the crude oil from which it originates. A tool to screen bitumen and evaluate its potential to release fumes would be highly beneficial. In this study, three methods have been employed to investigate a series of bitumen samples that were known to produce complaints by (a) quantifying benzene, toluene, ethylbenzene, and m, o, p-xylene (BTEX), (b) measuring the partition coefficients of these analytes, and (c) measuring the volatile mass of bitumen exposed to isothermal heating. It was found that the concentration of BTEX varied significantly between bitumen samples. The partition coefficients of these analytes are substantially the same between samples. Finally, the volatile mass of each sample varies significantly between samples, independent of bitumen grade or country of origin. These volatile masses correlate strongly with fuming complaints from bitumen and can be used as predictors of bitumen fuming risk.

2.
J Environ Manage ; 346: 119002, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37734211

ABSTRACT

This study assesses the financial viability and environmental evaluation of Photovoltaic (PV) panels from the perspective of the recent economic recession due to the Russia-Ukraine war. The financial viability of PV installation is calculated based on the estimated price, solar rebates, feed-in tariff, energy supply cost, and other evaluation parameters available at the assessment time. This calculation implicitly assumes variable discount rates (4%, 7%, and 12%) to show how the future will unfold and its correlations with design parameters. Details of economic appraisal integrating current inflation, rebates, and incentives of solar systems have been analyzed for the first time in this study. Financial indicators reveal the advantages of installing a grid-connected solar system (SS) over a solar battery storage system (SSWB). Compared to other installation systems, the lowest payback (PB) and highest internal rate of return (IRR) are observed for a 7 kW grid-connected solar system. Relative uncertainties of solar installation systems represent the necessity of government subsidies (r = -0.602) for solar storage batteries. LCA signifies the energy-intensive process of manufacturing metallurgical-grade (MG) silicon is the primary cause of significant greenhouse gas (GHG) emissions and cumulative energy demand (CED) for PV panels. A potential amount of metal and fossil fuels is depleted for interconnective components of solar installation systems. Amorphous solar panels exhibit lower impacts than polycrystalline, but further upgradation in service life is required to become cost-effective and cope with current inflation.

3.
Sci Total Environ ; 893: 164869, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37329917

ABSTRACT

The use of recycled plastic in asphalt is raising interest since contributing to increase the sustainability of roads pavements. The engineering performance of such roads are commonly assessed but scarcely correlated to the environmental impacts of incorporating recycled plastic in asphalt. This research encompasses an evaluation of the mechanical behaviour and environmental impact of introducing low melting point recycled plastics, low density polyethylene and commingled polyethylene/polypropylene, to conventional hot mix asphalt. While this investigation reveals a reduction in moisture resistance between 5 and 22 % contingent on the plastic content, the benefits include a significant 150 % enhancement in fatigue resistance and 85 % improvement in rutting resistance when compared with conventional hot mix asphalt (HMA). From an environmental perspective, high-temperature asphalt production with higher plastic content resulted in decreased gaseous emissions for both types of recycled plastics up to 21 %. Further comparison studies indicate that microplastic generation from recycled plastic-modified asphalt is comparable to that from commercial polymer-modified asphalt products, long employed by the industry. Overall, the use of low melting point recycled plastics as an asphalt modifier is promising since offering both engineering and environmental benefits when compared to conventional asphalt.

4.
Sci Total Environ ; 881: 163488, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37068664

ABSTRACT

The study aims to conduct a comprehensive life cycle assessment (LCA) of mixed glass waste (MGW) recycling processes to quantify the environmental impacts of crushed glass as a partial substitute for virgin aggregate. Upstream washing, crushing, and sorting conducted at material recycling facilities (MRF) are the prime activities to assess whether reprocessed MGW in pavement construction is an alternate feasible solution. None of the previous studies explicitly account for the relative uncertainties and optimization of waste glass upstream processes from an environmental perspective. The study calculates environmental impacts using the LCA tool SimaPro considering design factors attributed to transportation, electricity consumption, use of chemicals, and water for reprocessing glass waste. Relative uncertainties of design variables and the national transition policy (2021-2030) from non-renewable to renewable energy sources have been validated by performing detailed Monte Carlo simulations. The correlation coefficients (r = 0.64, 0.58, and 0.49) of successive variables explain how the higher environmental gains of the glass recycling process are outweighed by diesel, energy consumption, and transportation distances. Compared to natural quarry sand, the recycled glass aggregate produced through crushing and recycling of its by-products reduces CO2eq emissions by 16.2 % and 46.7 %, respectively. The need for a washing line at the plant, in addition to crushing, results in a higher environmental impact over natural sand by 90.1 % and emphasizes the benefits of collecting waste glass through a separate bin, hence avoiding contamination. The result indicates that the benefit of lowering emissions varies significantly when considering waste glass landfilling. Moreover, this study evaluates the potential impacts on asphalt and reinforced concrete pavements (RCP) with 5 %, 10 %, 15 %, and 20 % replacement of natural sand with recycled glass aggregate. The LCA emphasizes the limitations of energy-intensive waste glass reprocessing. The obtained results and uncertainty analysis based on primary MRF data and recycled product applications provide meaningful suggestions for a more fit-for-purpose waste management and natural resource conservation.

5.
Chemosphere ; 315: 137757, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36610511

ABSTRACT

The contamination of the environment by microplastics (MPs) in road dust poses a serious ecological and health concern. MPs have been detected in road dust worldwide and their presence has been mainly attributed to plastic litter fragmentation and vehicle tyre abrasion. Although current technologies such as Raman and Fourier Transform InfraRed spectroscopy as well as Scanning Electron Microscopy are capable of detecting MPs in road dust, the analysis of MPs shape and MPs smaller than 20 µm is limited and often labour demanding. More accurate, cost-effective and rapid techniques have now become necessary to analyse MPs in road dust, particularly since the development of large infrastructure projects that incorporate recycled plastic into road assets and roadside furniture. Nile red (NR) staining is a promising technique to identify MPs in environmental samples; however, it has not yet been applied to road dust. This study investigates the use of NR fluorescence microscopy to detect MPs in road dust and provides information about MP amount, shape and size distribution. The staining duration and temperature, solvent selection and NR concentration were optimised considering 33 different road dust materials, including 13 types of plastic. The NR staining procedure developed in this work is capable of successfully differentiating between MPs down to 1 µm and other non-plastic road dust materials. Future applications include assessing the contribution of plastic-modified roads to MP pollution, comparing the level of MP pollution in urban and rural areas and providing a rapid, simple, inexpensive and reliable monitoring approach for further studies to compare MP using a singular optimised methodology.


Subject(s)
Dust , Water Pollutants, Chemical , Dust/analysis , Environmental Monitoring/methods , Microplastics/analysis , Plastics , Environmental Pollution/analysis , Water Pollutants, Chemical/analysis
6.
Sci Total Environ ; 858(Pt 2): 159910, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36336045

ABSTRACT

The incorporation of recycled plastics in asphalt mixtures is getting a growing interest, however, exposing recycled plastics to the high working temperatures of asphalt has posed health and safety concerns. Few studies have paid attention to assessing health and environmental risks concerning recycled plastic-modified asphalt. This study investigates the release of 6 carcinogenic compounds from asphalt modified with recycled plastics, 4 volatile organic compounds (VOCs) and 2 polycyclic aromatic hydrocarbons (PAHs). The concentration of each compound was quantified by GC-MS. Human health risk assessments were conducted using probabilistic methods to assess the risk for an average Australian construction worker to get non-carcinogenic and carcinogenic health issues when exposed to conventional and plastic-modified asphalt fumes. Results showed that non-carcinogenic and carcinogenic risks related to VOC carcinogens (benzene, trichloroethylene, tetrachloroethylene and styrene) are negligible while PAHs (benzo[a]pyrene and dibenz[a,h]anthracene) constitute a possible non-carcinogenic risk and low carcinogenic risk for workers exposed to asphalt fumes. Overall the incorporation of recycled plastic in asphalt reduced the risk for workers to get non-carcinogenic and carcinogenic health issues compared to conventional asphalt mixes. ENVIRONMENTAL IMPLICATION: With increasing trends of using recycled plastics as road materials, concerns about the exposure of workers to carcinogenic gaseous emissions have been raised. This study demonstrates a non-carcinogenic and carcinogenic risk assessment on exposure to recycled plastic modified asphalt fumes. The findings suggest that recycled plastics decrease non-carcinogenic and carcinogenic risks compared to conventional asphalt.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Humans , Air Pollutants, Occupational/analysis , Carcinogens/analysis , Plastics/analysis , Occupational Exposure/analysis , Australia , Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Gases/analysis
7.
J Environ Manage ; 323: 116289, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36261991

ABSTRACT

This study conducts a comprehensive life cycle assessment (LCA) on converting waste vehicle tyres into recycled crumb rubber (CR) granules as an alternative polymer for enhancing asphalt properties. The LCA study has been performed on acquired industrial primary data by incorporating CR at different proportions of binder in one ton (1-ton) of asphalt mix following the wet method. The uncertainty analysis of design variables identified a relatively strong positive relation of emissions with the equipment energy consumption (r = 0.98). Monte Carlo simulations evaluate the potential renewable sources (solar, hydro, and wind) in sequence over fossil fuels for the possible transition in the Australian grid by 2030 and 2050, as per the Paris Agreement. 71.91% reduction of CO2 emissions is achievable by recycling vehicle tyres into crumb rubber compared to landfill and incineration. Recycling by-products of CR production, such as steel and textile, significantly mitigates negative impacts. A decrease of 2.23% emissions was associated to the use of crumb rubber as a binder modifier in the asphalt mixture via the midpoint assessment. In endpoint LCA, a higher association of resource (US$) saving costs was observed than for other protective zones, i.e., human health and ecosystem damage. Recycling 466,000 tonnes of disposable waste tyres contributes to 16.1 million US$ worth of resource savings. An equitable industry-based LCA and uncertainty analysis of design parameters can assist in prioritizing suitable options to improve efficiency and future emission strategies on a global scale.


Subject(s)
Rubber , Waste Management , Humans , Animals , Waste Management/methods , Carbon Dioxide , Ecosystem , Australia , Renewable Energy , Steel , Fossil Fuels , Life Cycle Stages
8.
Molecules ; 27(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36014307

ABSTRACT

Bitumen is a major construction material that can emit harmful fumes when heated. These fumes pose health risks to workers and communities near construction projects or asphalt mixing plants. The chemical complexity of bitumen fumes and the increasing use of additives add to the difficulty of analytically quantifying the harmful chemicals emitted using a single technique. Research on bitumen emissions consists of numerous sample preparation and analytical methods. There are a range of considerations to be made when deciding on an appropriate sample preparation method and instrumental configuration to optimise the analysis of specific organic contaminants in emissions. Researchers investigating emissions from bituminous materials may need to consider a range of analytical techniques to quantify harmful chemicals and assess the efficacy of new additives. This review summarises the primary methodologies for sample preparation and analytical techniques used in bitumen research and discusses future challenges and solutions.


Subject(s)
Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Construction Materials , Gases/analysis , Humans , Hydrocarbons/chemistry , Occupational Exposure/analysis , Polycyclic Aromatic Hydrocarbons/analysis
9.
J Hazard Mater ; 437: 129334, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35716564

ABSTRACT

Although plastic-modified roads are a promising approach to reducing the amount of landfilled and incinerated plastic and improving asphalt pavement performance, the contribution of plastic-modified roads to microplastic pollution is unknown. This study aimed to develop a new abrasion procedure to quantify the release of microplastics from recycled plastic-modified asphalt depending on environmental factors, the type and content of plastic used, and the incorporation method in bitumen/asphalt. A Wet Track Abrasion machine was used to simulate road traffic abrasion on a plastic-modified asphalt sample, and a novel microplastic extraction procedure was designed to extract the generated microplastics. Incorporating recycled plastic as a polymer modifier in the bitumen matrix resulted in an early release of microplastics compared to its addition as a synthetic aggregate substitute in the asphalt mix. Cold temperatures and low pH values favoured the generation of microplastics from plastic-modified asphalt. Due to the lack of universal thresholds for the release of microplastics into the environment, environmental agencies and local authorities could benefit from this novel laboratory-based microplastic assessment procedure to foster the sustainable use of recycled plastic in roads.


Subject(s)
Microplastics , Plastics , Environmental Pollution , Recycling
10.
Sci Total Environ ; 832: 155037, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35395294

ABSTRACT

A key aspect when investigating the use of recycled plastics in bitumen relates considerably to the issues relating to occupational, health and safety for humans and the environment from a fuming and emissions perspective. This research investigates laboratory-generated fumes in the forms of volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs) generated from producing polymer modified bitumen using five different types of recycled plastics. A comparative analysis of recycled plastic modified bitumen fumes was conducted based on a series of optimized parameters, including working temperatures (160 °C, 180 °C and 200 °C) and polymer contents (1%, 2%, 4% and 6% by weight of bitumen) against neat bitumen and polymer-modified bitumen. Forty-eight volatile organic compounds (VOCs) and sixteen polycyclic aromatic hydrocarbons (PAHs) were quantified using gas chromatography-mass spectrometry (GC-MS). The results from the comparative analysis revealed that the incorporation of recycled plastics could reduce overall emissions from both VOCs and PAHs perspectives. The reduction in emissions can be attributed to the enhancement in thermal stability of the bitumen blend when recycled plastics are added. The reduction rate is heavily dependent on the type and source of recycled plastics used in the blending process. Furthermore, a specific compound concentration analysis of the top-four weighted compounds emitted reveals that the total concentration of emissions can be deceiving as specific compounds can spike when adding recycled plastics in bitumen despite a reduction trend for the overall concentration.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Volatile Organic Compounds , Gases , Humans , Hydrocarbons/analysis , Plastics/chemistry , Polycyclic Aromatic Hydrocarbons/analysis
11.
Sci Total Environ ; 828: 154489, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35283122

ABSTRACT

Pavement recycling is actively applied on asphalt roads due to ageing problems associated with bituminous binders when exposed to weathering and trafficking during their service life. Recycling of asphalt occurs through rejuvenator agents. This study utilised bio-oil produced from hydrothermal liquefaction of waste plastic films (linear low-density polyethylene - LLDPE) to rejuvenate laboratory-aged bitumen. Initially, the neat bitumen was aged through thermal ageing (Pressure Ageing Vessel - PAV) and then the aged binder was mixed with bio-oil from waste plastics at 5% and 8% bio-oil (BO) by weight of aged binder. All four binders including neat bitumen, aged bitumen, aged bitumen/BO-5% and aged bitumen/BO-8% were analysed for thermogravimetric analysis, Fourier Transform Infra-Red analysis, rheology in the linear viscoelastic region, multiple stress creep and recovery analysis, and linear amplitude sweep analysis. The ageing of neat binder resulted in hardening of the binder; however, the bio-oil rejuvenator softened the aged binder significantly. The thermo-chemical and rheological performance of aged binder was significantly improved after the addition of bio-oil. The outcomes suggest how bio-oil produced from hydrothermal liquefaction of waste plastics (possibly non-recyclable) may serve as potential rejuvenator for aged asphalt binders in an effort to recycle more using non-recyclable material.


Subject(s)
Hydrocarbons , Plastics , Plant Oils , Polyphenols
12.
Sci Total Environ ; 829: 154604, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35307423

ABSTRACT

This study investigated the suitability of 31 recycled waste plastic samples obtained from 15 major recycling companies across Australia and New Zealand to be used as bitumen/asphalt modifiers. The plastics have been selected to be representative of recycled waste plastic around Australia and New Zealand. The recycled waste plastics belonged to either the post-industrial or post-consumer collection scheme. A new classification scheme was developed to rank each recycled waste plastic based on their chemical and physical properties against those of bitumen/asphalt. Specifically, density, polarity, melting point, solubility and melt flow index of the samples as well as the presence of contaminants, fillers and additives were analyzed for each recycled waste plastic material and their virgin counterpart. These 8 properties were used to rank various sources of recycled low-density poly(ethylene), linear low-density poly(ethylene), high density poly(ethylene) and poly(propylene) in addition to commingled plastics based on their suitability for bitumen modification (wet method). The modification of asphalt via replacement of virgin quarry aggregate with plastic aggregate (dry method) by recycled acrylonitrile butadiene styrene and poly(ethylene terephthalate) was also assessed by considering four criteria of purity, polarity, recycling contamination and hazardous additives. This new multi-criterion ranking approach revealed that low-density and linear low-density poly(ethylene) and acrylonitrile butadiene styrene and poly(ethylene terephthalate) should be preferentially used as bitumen/asphalt modifiers. This tool has been developed for recycling companies and bitumen/asphalt contractors to determine the suitability of recycled waste plastics within asphalt roads by a series of experimental techniques.


Subject(s)
Acrylonitrile , Plastics , Butadienes , Ethylenes , Hydrocarbons , Polyethylene , Polyethylene Terephthalates , Recycling , Styrenes , Waste Products
13.
Materials (Basel) ; 14(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34947432

ABSTRACT

Accurate characterisation and appropriate binder selection are essential to increase the load-induced cracking resistance of asphalt mixtures at an intermediate temperature. Hence, the primary goal of this study was to correlate the cracking resistance exerted by the binder with the cracking performance of asphalt mixtures. The laboratory-based experimental plan covered various types of laboratory tests specified by various agencies and road authorities to study the correlation of a neat bitumen and five polymer-modified binders with their corresponding asphalt mixtures. The fatigue life of the binders was assessed through a Linear Amplitude Sweep (LAS) test and statistically correlated with various load-induced cracking parameters from the indirect tensile test, semi-circular bending (SCB) test, and four points bending beam test (FPBB) of asphalt mixtures at 25 °C. Binders and mixes were further grouped depending on their polymeric family (i.e., modified with a particular type of polymer) to validate their statistical correlation. The indicator that mostly correlated the binder properties with the asphalt mixture properties is the secant modulus from the SCB test. Fatigue parameters obtained through LAS better explain the asphalt fatigue performance obtained through FPBB; specifically, asphalt tests at high strain levels (e.g., 400 micro strain) better correlate to the LAS fatigue parameter (Nf).

14.
Polymers (Basel) ; 13(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34641058

ABSTRACT

The failure of bituminous pavements takes place due to heavy traffic loads and weather-related conditions, such as moisture, temperature, and UV radiation. To overcome or minimize such failures, a great effort has been put in recent years to enhance the material properties of bitumen, ultimately improving field performance and increasing the pavement service life. Polymer modification is considered one of the most suitable and by far the most popular approach. Elastomers, chemically functionalised thermoplastics and plastomers * (* Note: notwithstanding the fact that in Polymer Science the word 'plastomer' indicates a polymer with the simultaneous behaviour of an elastomer and plastics (thermoplastics), this paper uses the term 'plastomer' to indicate a thermoplastic polymer as it is more commonly found in Civil and Pavement Engineering.) are the most commonly used polymers for bitumen modification. Plastomers provide several advantages and are commonly acknowledged to improve high-temperature stiffness, although some of them are more prone to phase separation and consequent storage instability. Nowadays, due to the recent push for recycling, many road authorities are looking at the use of recycled plastics in roads. Hence, some of the available plastomers-in pellet, flakes, or powder form-are coming from materials recycling facilities rather than chemical companies. This review article describes the details of using plastomers as bitumen modifiers-with a specific focus on recycled plastics-and how these can potentially be used to enhance bitumen performance and the road durability. Chemical modifiers for improving the compatibility between plastomers and bitumen are also addressed in this review. Plastomers, either individual or in combination of two or three polymers, are found to offer great stiffness at high temperature. Different polymers including HDPE, LDPE, LLDPE, MDPE, PP, PS, PET, EMA, and EVA have been successfully employed for bitumen modification. However, each of them has its own merit and demerit as thoroughly discussed in the paper. The recent push in using recycled materials in roads has brought new light to the use of virgin and recycled plastomers for bitumen modification as a low-cost and somehow environmental beneficial solution for roads and pavements.

15.
Sci Total Environ ; 778: 146187, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33714093

ABSTRACT

Many road construction and maintenance projects are increasingly using recycled material as pavement material. Most of the times, generic sustainability evaluations are ascribed to recycled products without fully considering their performance. The potential environmental benefits of various alternatives can be analytically evaluated with Life Cycle Assessment while many performance indicators can be found through laboratory and field tests. However, it is highly uncommon for these two approaches to be combined in the same assessment methodology and most of the analyses rely on one or the other. Trading off between environmental advantages and performance and durability in the field is considered of utmost importance when evaluating construction alternatives, especially on large projects. This study utilizes recycled plastic packaging films for bitumen modification. The recycled polyolefin blend is a combination of linear low-density polyethylene and low-density polyethylene (LLDPE/LDPE). LLDPE/LDPE was added in bitumen at various dosages (i.e., from 3% to 12% by weight of the bitumen) to assess the effect of recycled LLDPE/LDPE on the binder physio-chemical, rheological and thermal performance. In addition to the various laboratory performance tests, the environmental sustainability of the alternatives was evaluated through an LCA study. Finally, the outcomes from the two approaches (laboratory performance and environmental impact assessment) were combined via grey relational analysis to identify the best overall alternative. It was found that the storage stability of LLDPE/LDPE modified blends varied from 6 °C to 57 °C whereas the storage stability value of A35P was 2 °C. Softening point of bitumen was 44.1 °C which improved to 55.7-104.1 °C at different content of LLDPE/LDPE. The melting temperature of LLDPE/LDPE modified blends was 100.22, 101.44, 101.87 and 102.49 for LLDPE/LDPE-3%, LLDPE/LDPE-6%, LLDPE/LDPE-9% and LLDPE/LDPE-12%. The methodology highlighted in the paper can be easily adapted to other scenarios, hence facilitating multi-attribute decision-making processes when incorporating recycled materials in roads and leading to better informed decisions.

16.
Polymers (Basel) ; 12(4)2020 Apr 18.
Article in English | MEDLINE | ID: mdl-32325743

ABSTRACT

In this study, the mechanical and rheological properties of hybrid polymer-modified bitumen (PMB) have been investigated. For this purpose, nine different polymers-including crumb rubber, elastomers and plastomers at varying content-were studied to evaluate their mechanical performance as single polymers, first, and as a combination of two or more polymers as a hybrid polymer blend. Subsequently, the hybrid polymer blends were added in a relatively small percentage into the base bitumen to study its influence on the rheological performance of hybrid PMB. The mechanical properties identified from the analysis of the stress-strain curve of the single polymers were the Young's Modulus, tensile stress, and elongation at break. The chemical structure of the polymer hybrid blends was analysed using FTIR, followed by frequency sweep tests conducted using the dynamic shear rheometer (DSR) to determine the bitumen rheological properties. Results showed that hybrid PMB enhances the viscoelastic behaviour of bitumen at both low and high temperature compared to other PMBs only including single polymers.

17.
Materials (Basel) ; 13(7)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218261

ABSTRACT

Waste management has become an issue of increasing concern worldwide. These products are filling landfills and reducing the amount of livable space. Leachate produced from landfills contaminates the surrounding environment. The conventional incineration process releases toxic airborne fumes into the atmosphere. Researchers are working continuously to explore sustainable ways to manage and recycle waste materials. Recycling and reuse are the most efficient methods in waste management. The pavement industry is one promising sector, as different sorts of waste are being recycled into asphalt concrete and bitumen. This paper provides an overview of some promising waste products like high-density polyethylene, marble quarry waste, building demolition waste, ground tire rubber, cooking oil, palm oil fuel ash, coconut, sisal, cellulose and polyester fiber, starch, plastic bottles, waste glass, waste brick, waste ceramic, waste fly ash, and cigarette butts, and their use in asphalt concrete and bitumen. Many experts have investigated these waste materials and tried to find ways to use this waste for asphalt concrete and bitumen. In this paper, the outcomes from some significant research have been analyzed, and the scope for further investigation is discussed.

18.
Materials (Basel) ; 13(3)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041180

ABSTRACT

Littering waste is among the top environmental issues in the world, and the management of the waste has turned into a challenge in almost every city. It has been reported that 75% of smokers dispose of their cigarette butts (CBs) on the ground, even in public places. Researchers have discovered that CBs make up more than one-third of the total littered waste on the planet. Cigarette butts predominantly consist of a cellulose acetate fiber (plastic)-based filter wrapped in paper. Waste CBs contain burnt tobacco and tar, along with many other toxic chemicals. They take years to biodegrade depending on the environmental conditions, and toxic chemicals leach out and contaminate the environment. As part of an ongoing project, this paper presents a novel and sustainable technique to recycle cigarette butts in bitumen for the construction of flexible pavements. In this research, CBs have been pre-processed and mixed with bitumen classes C320, C170, and PMB A10E as a fiber modifier. Comprehensive laboratory investigations, including a penetration test, softening point test, and viscosity test, have been performed along with a binder drain off test to evaluate the performance of the modified samples. During this investigation, samples were prepared with 0.3% cellulose fiber, 0.2%, 0.3% 0.4%, and 0.5% CBs. The results of the CB-modified samples were compared with the sample with cellulose fiber and fresh bitumen (0% fiber). The results show that the physical and rheological properties of bitumen incorporating CBs improve significantly, and CBs could be used instead of virgin cellulose fiber as a fiber modifier.

SELECTION OF CITATIONS
SEARCH DETAIL
...