Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Front Mol Neurosci ; 15: 896314, 2022.
Article in English | MEDLINE | ID: mdl-35620447

ABSTRACT

Krabbe Disease (KD) is a lysosomal storage disorder characterized by the genetic deficiency of the lysosomal enzyme ß-galactosyl-ceramidase (GALC). Deficit or a reduction in the activity of the GALC enzyme has been correlated with the progressive accumulation of the sphingolipid metabolite psychosine, which leads to local disruption in lipid raft architecture, diffuse demyelination, astrogliosis, and globoid cell formation. The twitcher mouse, the most used animal model, has a nonsense mutation, which limits the study of how different mutations impact the processing and activity of GALC enzyme. To partially address this, we generated two new transgenic mouse models carrying point mutations frequently found in infantile and adult forms of KD. Using CRISPR-Cas9 gene editing, point mutations T513M (infantile) and G41S (adult) were introduced in the murine GALC gene and stable founders were generated. We show that GALC T513M/T513M mice are short lived, have the greatest decrease in GALC activity, have sharp increases of psychosine, and rapidly progress into a severe and lethal neurological phenotype. In contrast, GALC G41S/G41S mice have normal lifespan, modest decreases of GALC, and minimal psychosine accumulation, but develop adult mild inflammatory demyelination and slight declines in coordination, motor skills, and memory. These two novel transgenic lines offer the possibility to study the mechanisms by which two distinct GALC mutations affect the trafficking of mutated GALC and modify phenotypic manifestations in early- vs adult-onset KD.

2.
Lipids Health Dis ; 21(1): 32, 2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35351138

ABSTRACT

BACKGROUND: Recent findings show that extracellular vesicle constituents can exert short- and long-range biological effects on neighboring cells in the brain, opening an exciting avenue for investigation in the field of neurodegenerative diseases. Although it is well documented that extracellular vesicles contain many lipids and are enriched in sphingomyelin, cholesterol, phosphatidylserines and phosphatidylinositols, no reports have addressed the lipidomic profile of brain derived EVs in the context of Metachromatic Leukodystrophy, a lysosomal storage disease with established metabolic alterations in sulfatides. METHODS: In this study, we isolated and characterized the lipid content of brain-derived EVs using the arylsulfatase A knockout mouse as a model of the human condition. RESULTS: Our results suggest that biogenesis of brain-derived EVs is a tightly regulated process in terms of size and protein concentration during postnatal life. Our lipidomic analysis demonstrated that sulfatides and their precursors (ceramides) as well as other lipids including fatty acids are altered in an age-dependent manner in EVs isolated from the brain of the knockout mouse. CONCLUSIONS: In addition to the possible involvement of EVs in the pathology of Metachromatic Leukodystrophy, our study underlines that measuring lipid signatures in EVs may be useful as biomarkers of disease, with potential application to other genetic lipidoses.


Subject(s)
Extracellular Vesicles , Leukodystrophy, Metachromatic , Animals , Biomarkers/metabolism , Brain/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Leukodystrophy, Metachromatic/genetics , Leukodystrophy, Metachromatic/metabolism , Leukodystrophy, Metachromatic/pathology , Lipidomics , Mice
3.
Front Cell Neurosci ; 15: 619777, 2021.
Article in English | MEDLINE | ID: mdl-33746713

ABSTRACT

Lysosomal storage diseases (LSDs) with neurological involvement are inherited genetic diseases of the metabolism characterized by lysosomal dysfunction and the accumulation of undegraded substrates altering glial and neuronal function. Often, patients with neurological manifestations present with damage to the gray and white matter and irreversible neuronal decline. The use of animal models of LSDs has greatly facilitated studying and identifying potential mechanisms of neuronal dysfunction, including alterations in availability and function of synaptic proteins, modifications of membrane structure, deficits in docking, exocytosis, recycling of synaptic vesicles, and inflammation-mediated remodeling of synapses. Although some extrapolations from findings in adult-onset conditions such as Alzheimer's disease or Parkinson's disease have been reported, the pathogenetic mechanisms underpinning cognitive deficits in LSDs are still largely unclear. Without being fully inclusive, the goal of this mini-review is to present a discussion on possible mechanisms leading to synaptic dysfunction in LSDs.

4.
Mol Ther ; 29(5): 1883-1902, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33508430

ABSTRACT

Neonatal AAV9-gene therapy of the lysosomal enzyme galactosylceramidase (GALC) significantly ameliorates central and peripheral neuropathology, prolongs survival, and largely normalizes motor deficits in Twitcher mice. Despite these therapeutic milestones, new observations identified the presence of multiple small focal demyelinating areas in the brain after 6-8 months. These lesions are in stark contrast to the diffuse, global demyelination that affects the brain of naive Twitcher mice. Late-onset lesions exhibited lysosomal alterations with reduced expression of GALC and increased psychosine levels. Furthermore, we found that lesions were closely associated with the extravasation of plasma fibrinogen and activation of the fibrinogen-BMP-SMAD-GFAP gliotic response. Extravasation of fibrinogen correlated with tight junction disruptions of the vasculature within the lesioned areas. The lesions were surrounded by normal appearing white matter. Our study shows that the dysregulation of therapeutic GALC was likely driven by the exhaustion of therapeutic AAV episomal DNA within the lesions, paralleling the presence of proliferating oligodendrocyte progenitors and glia. We believe that this is the first demonstration of diminishing expression in vivo from an AAV gene therapy vector with detrimental effects in the brain of a lysosomal storage disease animal model. The development of this phenotype linking localized loss of GALC activity with relapsing neuropathology in the adult brain of neonatally AAV-gene therapy-treated Twitcher mice identifies and alerts to possible late-onset reductions of AAV efficacy, with implications to other genetic leukodystrophies.


Subject(s)
Galactosylceramidase/genetics , Genetic Therapy/methods , Leukodystrophy, Globoid Cell/pathology , White Matter/pathology , Animals , Animals, Newborn , Cells, Cultured , Dependovirus/genetics , Disease Models, Animal , Female , Fibrinogen/metabolism , Galactosylceramidase/metabolism , Genetic Vectors/administration & dosage , Leukodystrophy, Globoid Cell/blood , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/therapy , Male , Mice , Recurrence
5.
Methods Mol Biol ; 2187: 37-46, 2021.
Article in English | MEDLINE | ID: mdl-32770500

ABSTRACT

The discovery of dynamic platforms in cell membranes, called lipid rafts or detergent resistant membrane domains, opened a new chapter on studies of membrane cell biology. Indeed, the analysis of lipid rafts enabled innovative ways to understand cellular and molecular mechanisms regulating normal and pathological processes. Lipid rafts have been studied in most cell types, where they work by providing transient and fluid architectural scaffolding platforms regulating a spectrum of important signaling pathways, including receptor activities, protein-protein interactions, posttranslational modifications of proteins and lipids and the function of ion channels. In this chapter, we will explain how to isolate these membrane domains from neural tissue samples and perform further analysis of proteins and lipids.


Subject(s)
Membrane Lipids/metabolism , Membrane Microdomains/metabolism , Membrane Microdomains/pathology , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Animals , Cell Membrane/metabolism , Cell Membrane/pathology , Ion Channels/metabolism , Membrane Proteins/metabolism , Mice , Protein Interaction Maps/physiology , Protein Processing, Post-Translational/physiology , Signal Transduction/physiology
6.
Sci Rep ; 10(1): 828, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31964978

ABSTRACT

The aging brain is associated with significant changes in physiology that alter the tissue microenvironment of the central nervous system (CNS). In the aged CNS, increased demyelination has been associated with astrocyte hypertrophy and aging has been implicated as a basis for these pathological changes. Aging tissues accumulate chronic cellular stress, which can lead to the development of a pro-inflammatory phenotype that can be associated with cellular senescence. Herein, we provide evidence that astrocytes aged in culture develop a spontaneous pro-inflammatory and senescence-like phenotype. We found that extracellular vesicles (EVs) from young astrocyte were sufficient to convey support for oligodendrocyte differentiation while this support was lost by EVs from aged astrocytes. Importantly, the negative influence of culture age on astrocytes, and their cognate EVs, could be countered by treatment with rapamycin. Comparative proteomic analysis of EVs from young and aged astrocytes revealed peptide repertoires unique to each age. Taken together, these findings provide new information on the contribution of EVs as potent mediators by which astrocytes can extert changing influence in either the disease or aged brain.


Subject(s)
Aging/pathology , Astrocytes/cytology , Astrocytes/physiology , Brain/cytology , Brain/pathology , Cell Differentiation , Cellular Senescence , Extracellular Vesicles/physiology , Oligodendroglia/physiology , Animals , Cells, Cultured , Mice , Proteomics
7.
Bioanalysis ; 11(11): 1067-1083, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31251104

ABSTRACT

Aim: Mass spectrometry (MS)-based proteomics, particularly with the development of nano-ESI, have been invaluable to our understanding of altered proteins related to human disease. Niemann-Pick, type C1 (NPC1) disease is a fatal, autosomal recessive, neurodegenerative disorder. The resulting defects include unesterified cholesterol and sphingolipids accumulation in the late endosomal/lysosomal system resulting in organ dysfunction including liver disease. Materials & methods: First, we performed MS analysis of a complex mammalian proteome using both nano- and standard-flow ESI with the intent of developing a differential proteomics platform using standard-flow ESI. Next, we measured the differential liver proteome in the NPC1 mouse model via label-free quantitative MS using standard-flow ESI. Results: Using the standard-flow ESI approach, we found altered protein levels including, increased Limp2 and Rab7a in liver tissue of Npc1-/- compared to control mice. Conclusion: Standard-flow ESI can be a tool for quantitative proteomic studies when sample amount is not limited. Using this method, we have identified new protein markers of NPC1.


Subject(s)
Intracellular Signaling Peptides and Proteins/analysis , Liver Diseases/diagnosis , Liver/chemistry , Niemann-Pick Disease, Type C/diagnosis , Temperature , Animals , Chromatography, Liquid , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , Liver Diseases/metabolism , Mice , Mice, Knockout , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C/metabolism , Proteomics , Spectrometry, Mass, Electrospray Ionization
8.
Proc Natl Acad Sci U S A ; 116(21): 10488-10493, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31068461

ABSTRACT

Extracellular vesicles (EVs) are emerging as potent mediators of intercellular communication with roles in inflammation and disease. In this study, we examined the role of EVs from blood plasma (pEVs) in an experimental autoimmune encephalomyelitis mouse model of central nervous system demyelination. We determined that pEVs induced a spontaneous relapsing-remitting disease phenotype in MOG35-55-immunized C57BL/6 mice. This modified disease phenotype was found to be driven by CD8+ T cells and required fibrinogen in pEVs. Analysis of pEVs from relapsing-remitting multiple sclerosis patients also identified fibrinogen as a significant portion of pEV cargo. Together, these data suggest that fibrinogen in pEVs contributes to the perpetuation of neuroinflammation and relapses in disease.


Subject(s)
CD8-Positive T-Lymphocytes/physiology , Encephalomyelitis, Autoimmune, Experimental/immunology , Extracellular Vesicles/metabolism , Fibrinogen/metabolism , Animals , Humans , Mice , Mice, Inbred C57BL , Multiple Sclerosis , Recurrence
9.
Dis Model Mech ; 12(5)2019 05 23.
Article in English | MEDLINE | ID: mdl-31036560

ABSTRACT

Glycosphingolipid (GSL) accumulation is implicated in the neuropathology of several lysosomal conditions, such as Krabbe disease, and may also contribute to neuronal and glial dysfunction in adult-onset conditions such as Parkinson's disease, Alzheimer's disease and multiple sclerosis. GSLs accumulate in cellular membranes and disrupt their structure; however, how membrane disruption leads to cellular dysfunction remains unknown. Using authentic cellular and animal models for Krabbe disease, we provide a mechanism explaining the inactivation of lipid raft (LR)-associated IGF-1-PI3K-Akt-mTORC2, a pathway of crucial importance for neuronal function and survival. We show that psychosine, the GSL that accumulates in Krabbe disease, leads to a dose-dependent LR-mediated inhibition of this pathway by uncoupling IGF-1 receptor phosphorylation from downstream Akt activation. This occurs by interfering with the recruitment of PI3K and mTORC2 to LRs. Akt inhibition can be reversed by sustained IGF-1 stimulation, but only during a time window before psychosine accumulation reaches a threshold level. Our study shows a previously unknown connection between LR-dependent regulation of mTORC2 activity at the cell surface and a genetic neurodegenerative disease. Our results show that LR disruption by psychosine desensitizes cells to extracellular growth factors by inhibiting signal transmission from the plasma membrane to intracellular compartments. This mechanism serves also as a mechanistic model to understand how alterations of the membrane architecture by the progressive accumulation of lipids undermines cell function, with potential implications in other genetic sphingolipidoses and adult neurodegenerative conditions. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Insulin-Like Growth Factor I/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Membrane Microdomains/metabolism , Neurons/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sphingolipidoses/genetics , Animals , Brain/metabolism , Cell Survival/drug effects , Cytosol/drug effects , Cytosol/metabolism , Down-Regulation/drug effects , Enzyme Activation/drug effects , Intercellular Signaling Peptides and Proteins/pharmacology , Lysosomes/drug effects , Membrane Microdomains/drug effects , Mice, Inbred C57BL , Models, Biological , Neurons/drug effects , Phosphorylation/drug effects , Psychosine/pharmacology , Receptor, IGF Type 1/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/drug effects , Sphingolipidoses/metabolism
10.
Mol Ther ; 26(3): 730-743, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29433936

ABSTRACT

Analysis of microRNA (miR) expression in the central nervous system white matter of SJL mice infected with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) revealed a significant reduction of miR-219, a critical regulator of myelin assembly and repair. Restoration of miR-219 expression by intranasal administration of a synthetic miR-219 mimic before disease onset ameliorates clinical disease, reduces neurogliosis, and partially recovers motor and sensorimotor function by negatively regulating proinflammatory cytokines and virus RNA replication. Moreover, RNA sequencing of host lesions showed that miR-219 significantly downregulated two genes essential for the biosynthetic cholesterol pathway, Cyp51 (lanosterol 14-α-demethylase) and Srebf1 (sterol regulatory element-binding protein-1), and reduced cholesterol biosynthesis in infected mice and rat CG-4 glial precursor cells in culture. The change in cholesterol biosynthesis had both anti-inflammatory and anti-viral effects. Because RNA viruses hijack endoplasmic reticulum double-layered membranes to provide a platform for RNA virus replication and are dependent on endogenous pools of cholesterol, miR-219 interference with cholesterol biosynthesis interfered virus RNA replication. These findings demonstrate that miR-219 inhibits TMEV-induced demyelinating disease through its anti-inflammatory and anti-viral properties.


Subject(s)
Cardiovirus Infections/complications , Cardiovirus Infections/virology , Demyelinating Diseases/etiology , Demyelinating Diseases/pathology , MicroRNAs/genetics , Theilovirus , Viral Load , Animals , Biomarkers , Cell Line , Cholesterol/metabolism , Cytokines/metabolism , Demyelinating Diseases/metabolism , Disease Models, Animal , Female , Fibrinogen/metabolism , Gene Expression Regulation , Inflammation Mediators/metabolism , Lipid Metabolism/genetics , Mice , Microglia/metabolism , RNA Interference , Rats
11.
Mol Ther ; 26(3): 874-889, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29433937

ABSTRACT

We report a global adeno-associated virus (AAV)9-based gene therapy protocol to deliver therapeutic galactosylceramidase (GALC), a lysosomal enzyme that is deficient in Krabbe's disease. When globally administered via intrathecal, intracranial, and intravenous injections to newborn mice affected with GALC deficiency (twitcher mice), this approach largely surpassed prior published benchmarks of survival and metabolic correction, showing long-term protection of demyelination, neuroinflammation, and motor function. Bone marrow transplantation, performed in this protocol without immunosuppressive preconditioning, added minimal benefits to the AAV9 gene therapy. Contrasting with other proposed pre-clinical therapies, these results demonstrate that achieving nearly complete correction of GALC's metabolic deficiencies across the entire nervous system via gene therapy can have a significant improvement to behavioral deficits, pathophysiological changes, and survival. These results are an important consideration for determining the safest and most effective manner for adapting gene therapy to treat this leukodystrophy in the clinic.


Subject(s)
Carbohydrate Metabolism , Galactosylceramidase/genetics , Galactosylceramidase/metabolism , Genetic Therapy , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/metabolism , Phenotype , Animals , Autonomic Pathways/metabolism , Autonomic Pathways/pathology , Autonomic Pathways/ultrastructure , Axons/metabolism , Axons/pathology , Axons/ultrastructure , Behavior, Animal , Brain/metabolism , Dependovirus/genetics , Disease Models, Animal , Female , Gene Expression , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Genetic Vectors/pharmacokinetics , Leukodystrophy, Globoid Cell/diagnosis , Leukodystrophy, Globoid Cell/therapy , Male , Mice , Myelin Sheath/metabolism , Myelin Sheath/pathology , Myelin Sheath/ultrastructure , Tissue Distribution , Transduction, Genetic , Treatment Outcome
12.
PLoS One ; 12(5): e0178103, 2017.
Article in English | MEDLINE | ID: mdl-28531236

ABSTRACT

In prior studies, our laboratory showed that psychosine accumulates and disrupts lipid rafts in brain membranes of Krabbe's disease. A model of lipid raft disruption helped explaining psychosine's effects on several signaling pathways important for oligodendrocyte survival and differentiation but provided more limited insight in how this sphingolipid caused demyelination. Here, we have studied how this cationic inverted coned lipid affects the fluidity, stability and structure of myelin and plasma membranes. Using a combination of cutting-edge imaging techniques in non-myelinating (red blood cell), and myelinating (oligodendrocyte) cell models, we show that psychosine is sufficient to disrupt sphingomyelin-enriched domains, increases the rigidity of localized areas in the plasma membrane, and promotes the shedding of membranous microvesicles. The same physicochemical and structural changes were measured in myelin membranes purified from the mutant mouse Twitcher, a model for Krabbe's disease. Areas of higher rigidity were measured in Twitcher myelin and correlated with higher levels of psychosine and of myelin microvesiculation. These results expand our previous analyses and support, for the first time a pathogenic mechanism where psychosine's toxicity in Krabbe disease involves deregulation of cell signaling not only by disruption of membrane rafts, but also by direct local destabilization and fragmentation of the membrane through microvesiculation. This model of membrane disruption may be fundamental to introduce focal weak points in the myelin sheath, and consequent diffuse demyelination in this leukodystrophy, with possible commonality to other demyelinating disorders.


Subject(s)
Cell-Derived Microparticles/metabolism , Leukodystrophy, Globoid Cell/metabolism , Myelin Sheath/metabolism , Oligodendroglia/cytology , Psychosine/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Female , Humans , Male , Membrane Microdomains , Mice , Myelin Sheath/chemistry , Oligodendroglia/metabolism
13.
J Neurosci Res ; 94(11): 1333-40, 2016 11.
Article in English | MEDLINE | ID: mdl-27638615

ABSTRACT

The discovery that most cells produce extracellular vesicles (EVs) and release them in the extracellular milieu has spurred the idea that these membranous cargoes spread pathogenic mechanisms. In the brain, EVs may have multifold and important physiological functions, from deregulating synaptic activity to promoting demyelination to changes in microglial activity. The finding that small EVs (exosomes) contain α-synuclein and ß-amyloid, among other pathogenic proteins, is an example of this notion, underscoring their potential role in the brains of patients with Parkinson's and Alzheimer's diseases. Given that they are membranous vesicles, we speculate that EVs also have an intrinsic capacity to incorporate sphingolipids. In conditions under which these lipids are elevated to toxic levels, such as in Krabbe's disease and metachromatic leukodystrophy, EVs may contribute to spread disease from sick to healthy cells. In this essay, we discuss a working hypothesis that brain cells in sphingolipidoses clear some of the accumulated lipid material to attempt restoring cell homeostasis via EV secretion. We hypothesize that secreted sphingolipid-loaded EVs shuttle pathogenic lipids to cells that are not intrinsically affected, contributing to establishing non-cell-autonomous defects. © 2016 Wiley Periodicals, Inc.


Subject(s)
Biological Transport/physiology , Brain/cytology , Cell Communication/physiology , Extracellular Vesicles/metabolism , Sphingolipids/metabolism , Animals , Humans , Models, Biological , Sphingolipidoses/pathology , Sphingolipids/toxicity
14.
J Neurosci Res ; 94(12): 1579-1587, 2016 12.
Article in English | MEDLINE | ID: mdl-27557608

ABSTRACT

Extracellular vesicles (EVs) are membrane nanovesicles of diverse sizes secreted by different cell types and are involved in intercellular communication. EVs shuttle proteins, nucleic acids, and lipids that reflect their cellular origin and could mediate their biological function in recipient cells. EVs circulate in biological fluids and are considered as potential biomarkers that could be used to analyze and characterize disease development, course and response to treatment. EVs exhibit specific distribution of glycolipids and membrane organization, but little is known about the biological significance of this distribution or how it could contribute to pathological conditions such as multiple sclerosis (MS). We provide the first description of sulfatide composition in plasma-derived EVs by ultra-high-performance liquid chromatography tandem mass spectrometry. We found that EVs of different sizes showed C16:0 sulfatide but no detectable levels of C18:0, C24:0, or C24:1 sulfatide species. Small EVs isolated at 100,000 × g-enriched in exosomes-from plasma of patients with MS showed a significant increase of C16:0 sulfatide compared with healthy controls. Nanoparticle tracking analysis showed that the particle size distribution in MS plasma was significantly different compared with healthy controls. Characterization of small EVs isolated from MS plasma showed similar protein content and similar levels of exosomal markers (Alix, Rab-5B) and vesicular marker MHC class I (major histocompatibility complex class I) compared with healthy controls. Our findings indicate that C16:0 sulfatide associated with small EVs is a candidate biomarker for MS that could potentially reflect pathological changes associated with this disease and/or the effects of its treatment. © 2016 Wiley Periodicals, Inc.


Subject(s)
Cytoplasmic Vesicles/metabolism , Extracellular Vesicles/metabolism , Multiple Sclerosis/metabolism , Sulfoglycosphingolipids/metabolism , Adult , Biomarkers , Chromatography, High Pressure Liquid , Cytoplasmic Vesicles/chemistry , Extracellular Vesicles/chemistry , Female , Genes, MHC Class I , Humans , Male , Middle Aged , Multiple Sclerosis/blood , Nanoparticles/chemistry , Nanoparticles/metabolism , Particle Size , Sulfoglycosphingolipids/analysis , Sulfoglycosphingolipids/blood , Tandem Mass Spectrometry , Young Adult
15.
J Neurosci Res ; 94(12): 1520-1530, 2016 12.
Article in English | MEDLINE | ID: mdl-27426866

ABSTRACT

Krabbe's disease is a leukodystrophy resulting from deficiency of galactosylceramidase and the accumulation of galactosylsphingosine (psychosine) in the nervous system. Psychosine is believed to cause central demyelination by killing oligodendrocytes. Quantitative analysis of this process is lacking. To address this, we generated a new transgenic reporter twitcher line in which myelinating oligodendrocytes are genetically marked by the expression of LacZ under control of the myelin basic protein (MBP) promoter. MBP-LacZ-twitcher transgenic mice were used for unbiased stereological quantification of ß-galactosidase+ oligodendrocytes in the spinal cord. As expected, we found decreased numbers of these cells in mutant cords, paralleling the severity of clinical disease. The decrease of oligodendrocytes does not correlate well with the increase of psychosine. The new MBP-LacZ-twitcher line will be a useful genetic tool for measuring changes in oligodendrocyte numbers in different regions of the mutant CNS and in preclinical trials of therapies to prevent demyelination. © 2016 Wiley Periodicals, Inc.


Subject(s)
Lac Operon/genetics , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/pathology , Oligodendroglia/pathology , Aging , Animals , Cells, Cultured , Genes, Reporter/genetics , Mice , Mice, Neurologic Mutants , Mice, Transgenic , Mutation , Myelin Proteins/biosynthesis , Myelin Proteins/genetics , Neuroglia/metabolism , Psychosine/metabolism , beta-Galactosidase/metabolism
16.
J Neuroimmunol ; 297: 159-68, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27397090

ABSTRACT

Thrombin is a potent regulator of brain function in health and disease, modulating glial activation and brain inflammation. Thrombin inhibitors, several of which are in clinical use as anti-coagulants, can reduce thrombin-dependent neuroinflammation in pathological conditions. However, their effects in a healthy CNS are largely unknown. In adult healthy mice, we compared the effects of treatment by the direct thrombin inhibitor dabigatran etexilate (DE), to those of warfarin, which acts by preventing vitamin K recycling essential for coagulation. After 4weeks, warfarin increased both astrocyte GFAP and microglia Iba-1 staining throughout the CNS; whereas DE reduced expression of both markers. Warfarin, but not DE, reduced sulfatide levels; and warfarin showed longer lasting changes in cerebellar gene expression. DE also reduced glial activation in a mouse model of Alzheimer's disease, although no changes in amyloid plaque burden were observed. These results suggest that treatment with direct thrombin inhibitors may be preferable to those agents which reduce vitamin K levels and have the potential to increase glial activation.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Anticoagulants/therapeutic use , Dabigatran/therapeutic use , Neuroglia/drug effects , Warfarin/therapeutic use , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Brain/pathology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Disease Models, Animal , Female , Gene Expression Regulation/drug effects , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Mutation/genetics , Neuroglia/metabolism , Peptide Fragments/metabolism , Presenilin-1/genetics
17.
J Biol Chem ; 290(11): 7040-53, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25605750

ABSTRACT

The membrane-bound receptor for platelet-derived growth factor A (PDGFRα) is crucial for controlling the production of oligodendrocytes (OLs) for myelination, but regulation of its activity during OL differentiation is largely unknown. We have examined the effect of increased sulfated content of galactosylceramides (sulfatides) on the regulation of PDGFRα in multipotential neural precursors (NPs) that are deficient in arylsulfatase A (ASA) activity. This enzyme is responsible for the lysosomal hydrolysis of sulfatides. We show that sulfatide accumulation significantly impacts the formation of OLs via deregulation of PDGFRα function. PDGFRα is less associated with detergent-resistant membranes in ASA-deficient cells and showed a significant decrease in AKT phosphorylation. Rescue experiments with ASA showed a normalization of the ratio of long versus short sulfatides, restored PDGFRα levels, corrected its localization to detergent-resistant membranes, increased AKT phosphorylation, and normalized the production of OLs in ASA-deficient NPs. Moreover, our studies identified a novel mechanism that regulates the secretion of PDGFRα in NPs, in glial cells, and in the brain cortex via exosomal shedding. Our study provides a first step in understanding the role of sulfatides in regulating PDGFRα levels in OLs and its impact in myelination.


Subject(s)
Cerebroside-Sulfatase/genetics , Fatty Acids/metabolism , Leukodystrophy, Metachromatic/pathology , Neural Stem Cells/pathology , Oligodendroglia/pathology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Sulfoglycosphingolipids/metabolism , Animals , Cells, Cultured , Cerebroside-Sulfatase/metabolism , Exosomes/genetics , Exosomes/metabolism , Leukodystrophy, Metachromatic/genetics , Leukodystrophy, Metachromatic/metabolism , Mice, Inbred C57BL , Myelin Sheath/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis , Oligodendroglia/cytology , Oligodendroglia/metabolism , Proteolysis , Receptor, Platelet-Derived Growth Factor alpha/genetics , Signal Transduction , Transcription, Genetic
18.
Anal Biochem ; 467: 31-9, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25205652

ABSTRACT

Sulfated galactosylceramides (sulfatides) are glycosphingolipids associated with cholesterol- and sphingolipid-enriched membrane microdomains (lipid rafts) and are highly expressed in brain tissue. Although it is known that sulfatide species show heterogeneity in their fatty acid acyl group composition throughout brain development, their lipid raft distribution and biological relevance is poorly understood. We validated a fast and sensitive ultra-high-pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method to measure developmentally regulated sulfatide species (C16:0, C18:0, C24:1, and C24:0) in central nervous system (CNS) lipid rafts isolated without using detergent. Our UHPLC-MS/MS assay showed good accuracy and precision with a linear range of 5 to 1,000 nM for C18:0 and C24:1 sulfatides and 10 to 1,000 nM for C16:0 and C24:0 sulfatides. We applied this quantitative analysis to detergent-free lipid rafts isolated from wild-type mice and arylsulfatase A-deficient (ASA knockout) mice that accumulate sulfatides. All four sulfatide species were more abundant in raft membranes than in non-raft membranes, with a significant increase in lipid rafts isolated from ASA knockout mice. This is the first description of an analytical method to study these sulfatide species in raft and non-raft membranes and has the potential to be applied to preparations from other tissues.


Subject(s)
Brain/metabolism , Cerebroside-Sulfatase/physiology , Membrane Microdomains/metabolism , Sulfoglycosphingolipids/analysis , Animals , Animals, Newborn , Blotting, Western , Cholesterol/analysis , Chromatography, High Pressure Liquid , Mice , Mice, Knockout , Tandem Mass Spectrometry
19.
J Pathol ; 232(5): 509-21, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24415155

ABSTRACT

Demyelination is a major contributor to the general decay of neural functions in children with Krabbe disease. However, recent reports have indicated a significant involvement of neurons and axons in the neuropathology of the disease. In this study, we have investigated the nature of cellular inclusions in the Krabbe brain. Brain samples from the twitcher mouse model for Krabbe disease and from patients affected with the infantile and late-onset forms of the disease were examined for the presence of neuronal inclusions. Our experiments demonstrated the presence of cytoplasmic aggregates of thioflavin-S-reactive material in both human and murine mutant brains. Most of these inclusions were associated with neurons. A few inclusions were detected to be associated with microglia and none were associated with astrocytes or oligodendrocytes. Thioflavin-S-reactive inclusions increased in abundance, paralleling the development of neurological symptoms, and distributed throughout the twitcher brain in areas of major involvement in cognition and motor functions. Electron microscopy confirmed the presence of aggregates of stereotypic ß-sheet folded proteinaceous material. Immunochemical analyses identified the presence of aggregated forms of α-synuclein and ubiquitin, proteins involved in the formation of Lewy bodies in Parkinson's disease and other neurodegenerative conditions. In vitro assays demonstrated that psychosine, the neurotoxic sphingolipid accumulated in Krabbe disease, accelerated the fibrillization of α-synuclein. This study demonstrates the occurrence of neuronal deposits of fibrillized proteins including α-synuclein, identifying Krabbe disease as a new α-synucleinopathy.


Subject(s)
Brain/metabolism , Leukodystrophy, Globoid Cell/metabolism , Lewy Bodies/metabolism , Neurons/metabolism , alpha-Synuclein/metabolism , Animals , Benzothiazoles , Brain/physiopathology , Brain/ultrastructure , Case-Control Studies , Cognition , Disease Models, Animal , Fluorescent Dyes , Humans , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/pathology , Leukodystrophy, Globoid Cell/physiopathology , Leukodystrophy, Globoid Cell/psychology , Lewy Bodies/ultrastructure , Mice , Motor Activity , Mutation , Neurons/ultrastructure , Psychosine/metabolism , Thiazoles , alpha-Synuclein/genetics
20.
J Neurochem ; 127(5): 600-4, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23777394

ABSTRACT

Multiple sclerosis (MS) is considered an autoimmune demyelinating disease of the CNS and myelin-derived glycolipids are one of the targets of this autoimmune attack. In this study, we examined for the first time the plasma distribution of sulfatide isoforms. Sulfatides with long-chain (C24 : 0 or C24 : 1) and short-chain (C16 : 0 or C18 : 0) fatty acids were quantified in plasma of relapsing­remitting MS patients by ultra-high-performance liquid chromatography tandem mass spectrometry. We found that C18 : 0 and C24 : 1 sulfatide plasma levels positively correlated with the Expanded Disability Status Scale. C16/C18 : 0 and C16/C24 : 0 ratios also correlated with the age and the time since last relapse. Healthy women showed higher levels of C16 : 0 sulfatide than healthy men; however, this gender difference disappeared in MS patients. Our data underline the potential use of sulfatides as biomarkers in relapsing­remitting MS and points to a possible association with the higher susceptibility of women to develop MS.Sulfatides are glycolipids highly enriched in myelin that have been associated with multiple sclerosis (MS). In this study, we have found a positive correlation between levels of specific sulfatides in plasma and increased disability in patients with relapsing-remitting MS. These findings underline the potential use of these molecules as biomarkers for MS.


Subject(s)
Autoimmunity/immunology , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/metabolism , Sulfoglycosphingolipids/blood , Adult , Biomarkers/blood , Chromatography, Liquid , Female , Humans , Male , Mass Spectrometry , Middle Aged , Molecular Weight , Multiple Sclerosis, Relapsing-Remitting/epidemiology , Risk Factors , Sulfoglycosphingolipids/chemistry , Sulfoglycosphingolipids/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...