Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 162
Filter
1.
iScience ; 27(7): 110261, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39021803

ABSTRACT

Mass cytometry by time-of-flight (CyTOF) is an emerging technology allowing for in-depth characterization of cellular heterogeneity in cancer and other diseases. Unfortunately, high-dimensional analyses of CyTOF data remain quite demanding. Here, we deploy a bioinformatics framework that tackles two fundamental problems in CyTOF analyses namely (1) automated annotation of cell populations guided by a reference dataset and (2) systematic utilization of single-cell data for effective patient stratification. By applying this framework on several publicly available datasets, we demonstrate that the Scaffold approach achieves good trade-off between sensitivity and specificity for automated cell type annotation. Additionally, a case study focusing on a cohort of 43 leukemia patients reported salient interactions between signaling proteins that are sufficient to predict short-term survival at time of diagnosis using the XGBoost algorithm. Our work introduces an automated and versatile analysis framework for CyTOF data with many applications in future precision medicine projects.

2.
Cell Rep Med ; 5(6): 101572, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38754420

ABSTRACT

Acute myeloid leukemia (AML) is characterized by the accumulation of immature myeloid cells in the bone marrow and the peripheral blood. Nearly half of the AML patients relapse after standard induction therapy, and new forms of therapy are urgently needed. Chimeric antigen receptor (CAR) T therapy has so far not been successful in AML due to lack of efficacy and safety. Indeed, the most attractive antigen targets are stem cell markers such as CD33 or CD123. We demonstrate that CD37, a mature B cell marker, is expressed in AML samples, and its presence correlates with the European LeukemiaNet (ELN) 2017 risk stratification. We repurpose the anti-lymphoma CD37CAR for the treatment of AML and show that CD37CAR T cells specifically kill AML cells, secrete proinflammatory cytokines, and control cancer progression in vivo. Importantly, CD37CAR T cells display no toxicity toward hematopoietic stem cells. Thus, CD37 is a promising and safe CAR T cell AML target.


Subject(s)
Immunotherapy, Adoptive , Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Humans , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Animals , Immunotherapy, Adoptive/methods , Mice , Tetraspanins/immunology , Cell Line, Tumor , T-Lymphocytes/immunology , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/immunology , Female , Male , Antigens, Neoplasm
6.
Leukemia ; 38(4): 781-787, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38278960

ABSTRACT

Tyrosine kinase inhibitor (TKI) discontinuation in chronic myeloid leukemia (CML) has become part of routine care for patients with a sustained deep molecular response (DMR). Approximately 50% experience a molecular relapse upon TKI cessation. Most of them quickly regain DMR upon TKI resumption. Whether these patients can achieve a second treatment-free remission (TFR) remains unclear. DAstop2 (ClinicalTrials.gov ID: NCT03573596) is a prospective study including patients with a failed first TFR attempt re-treated with any TKI for ≥ one year. Upon entering the study, patients received the TKI dasatinib for additional two years. Patients with sustained DMR for ≥1 year qualified for a second TKI stop. Ninety-four patients were included between Oct 2017-Dec 2021. At the time of data analysis, 62 patients had attempted a 2nd stop. After a median follow-up of 27 months from 2nd stop, TFR rates were 61, 56 and 46% at 6, 12 and 24 months respectively. No progression to advanced stage disease was seen and 87% had re-achieved MR4 within a median of 3 months from TKI re-initiation. In summary, we show that a 2nd TFR attempt after dasatinib treatment is safe, feasible and TFR rates seem in the range of those reported in trials of a first TKI stop.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Protein Kinase Inhibitors , Humans , Dasatinib/adverse effects , Prospective Studies , Protein Kinase Inhibitors/adverse effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Remission Induction , Treatment Outcome
8.
Leukemia ; 37(9): 1842-1849, 2023 09.
Article in English | MEDLINE | ID: mdl-37507426

ABSTRACT

Intensive induction chemotherapy achieves complete remissions (CR) in >60% of patients with acute myeloid leukemia (AML) but overall survival (OS) is poor for relapsing patients not eligible for allogeneic hematopoietic stem cell transplantation (allo-HSCT). Oral azacytidine may be used as maintenance treatment in AML in first remission, but can be associated with substantial side effects, and less toxic strategies should be explored. Twenty AML patients in first CR (CR1) ineligible for allo-HSCT were treated with FDC101, an autologous RNA-loaded mature dendritic cell (mDC) vaccine expressing two leukemia-associated antigens (LAAs). Each dose consisted of 2.5-5 × 106 mDCs per antigen, given weekly until week 4, at week 6, and then monthly, during the 2-year study period. Patients were followed for safety and long-term survival. Treatment was well tolerated, with mild and transient injection site reactions. Eleven of 20 patients (55%) remained in CR, while 4 of 6 relapsing patients achieved CR2 after salvage therapy and underwent allo-HSCT. OS at five years was 75% (95% CI: 50-89), with 70% of patients ≥60 years of age being long-term survivors. Maintenance therapy with this DC vaccine was well tolerated in AML patients in CR1 and was accompanied by encouraging 5-year long-term survival.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Induction Chemotherapy , Transplantation, Homologous , Leukemia, Myeloid, Acute/therapy , Remission Induction , Recurrence , Dendritic Cells , Retrospective Studies , Antigens, Neoplasm , WT1 Proteins/genetics
9.
J Hematol ; 12(2): 92-99, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37187497

ABSTRACT

Li-Fraumeni syndrome (LFS) is a cancer predisposing syndrome caused by pathogenic germline TP53 gene mutations with important therapeutic and prognostic implications for many types of cancer. A small proportion of LFS patients develop B-cell lymphoblastic leukemia (B-ALL) in adult years. Standard treatment often proves inadequate, but immunotherapy has provided new treatment options. The current case report presents a pregnant woman with LFS and newly diagnosed B-ALL with hypodiploidy developed after treatment for early-onset breast cancer. We describe the treatment course, treatment-related complications and provide laboratory data crucial for evaluating and modifying treatment for this difficult clinical case. Our findings support the need for close collaboration between clinicians and experts on immunophenotyping. Through our report, we show that immunotherapy is feasible in patients with LFS and B-ALL, despite a poor initial response to induction therapy.

11.
Cancer Immunol Immunother ; 72(7): 2357-2373, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36939854

ABSTRACT

Metastatic castration-resistant prostate cancer (mCRPC) is an immunologically cold disease with dismal outcomes. Cryoablation destroys cancer tissue, releases tumor-associated antigens and creates a pro-inflammatory microenvironment, while dendritic cells (DCs) activate immune responses through processing of antigens. Immunotherapy combinations could enhance the anti-tumor efficacy. This open-label, single-arm, single-center phase I trial determined the safety and tolerability of combining cryoablation and autologous immature DC, without and with checkpoint inhibitors. Immune responses and clinical outcomes were evaluated. Patients with mCRPC, confirmed metastases and intact prostate gland were included. The first participants underwent prostate cryoablation with intratumoral injection of autologous DCs in a 3 + 3 design. In the second part, patients received cryoablation, the highest acceptable DC dose, and checkpoint inhibition with either ipilimumab or pembrolizumab. Sequentially collected information on adverse events, quality of life, blood values and images were analyzed by standard descriptive statistics. Neither dose-limiting toxicities nor adverse events > grade 3 were observed in the 18 participants. Results indicate antitumor activity through altered T cell receptor repertoires, and 33% durable (> 46 weeks) clinical benefit with median 40.7 months overall survival. Post-treatment pain and fatigue were associated with circulating tumor cell (CTC) presence at inclusion, while CTC responses correlated with clinical outcomes. This trial demonstrates that cryoimmunotherapy in mCRPC is safe and well tolerated, also for the highest DC dose (2.0 × 108) combined with checkpoint inhibitors. Further studies focusing on the biologic indications of antitumor activity and immune system activation could be considered through a phase II trial focusing on treatment responses and immunologic biomarkers.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Humans , Male , Dendritic Cells , Ipilimumab/therapeutic use , Prospective Studies , Prostatic Neoplasms, Castration-Resistant/therapy , Quality of Life , Tumor Microenvironment
12.
Nat Commun ; 14(1): 115, 2023 01 07.
Article in English | MEDLINE | ID: mdl-36611026

ABSTRACT

Aberrant pro-survival signaling is a hallmark of cancer cells, but the response to chemotherapy is poorly understood. In this study, we investigate the initial signaling response to standard induction chemotherapy in a cohort of 32 acute myeloid leukemia (AML) patients, using 36-dimensional mass cytometry. Through supervised and unsupervised machine learning approaches, we find that reduction of extracellular-signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK) phosphorylation in the myeloid cell compartment 24 h post-chemotherapy is a significant predictor of patient 5-year overall survival in this cohort. Validation by RNA sequencing shows induction of MAPK target gene expression in patients with high phospho-ERK1/2 24 h post-chemotherapy, while proteomics confirm an increase of the p38 prime target MAPK activated protein kinase 2 (MAPKAPK2). In this study, we demonstrate that mass cytometry can be a valuable tool for early response evaluation in AML and elucidate the potential of functional signaling analyses in precision oncology diagnostics.


Subject(s)
Leukemia, Myeloid, Acute , Precision Medicine , Humans , Signal Transduction , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Phosphorylation , p38 Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/physiology
15.
J Transl Med ; 20(1): 225, 2022 05 14.
Article in English | MEDLINE | ID: mdl-35568909

ABSTRACT

BACKGROUND: Matching treatment based on tumour molecular characteristics has revolutionized the treatment of some cancers and has given hope to many patients. Although personalized cancer care is an old concept, renewed attention has arisen due to recent advancements in cancer diagnostics including access to high-throughput sequencing of tumour tissue. Targeted therapies interfering with cancer specific pathways have been developed and approved for subgroups of patients. These drugs might just as well be efficient in other diagnostic subgroups, not investigated in pharma-led clinical studies, but their potential use on new indications is never explored due to limited number of patients. METHODS: In this national, investigator-initiated, prospective, open-label, non-randomized combined basket- and umbrella-trial, patients are enrolled in multiple parallel cohorts. Each cohort is defined by the patient's tumour type, molecular profile of the tumour, and study drug. Treatment outcome in each cohort is monitored by using a Simon two-stage-like 'admissible' monitoring plan to identify evidence of clinical activity. All drugs available in IMPRESS-Norway have regulatory approval and are funded by pharmaceutical companies. Molecular diagnostics are funded by the public health care system. DISCUSSION: Precision oncology means to stratify treatment based on specific patient characteristics and the molecular profile of the tumor. Use of targeted drugs is currently restricted to specific biomarker-defined subgroups of patients according to their market authorization. However, other cancer patients might also benefit of treatment with these drugs if the same biomarker is present. The emerging technologies in molecular diagnostics are now being implemented in Norway and it is publicly reimbursed, thus more cancer patients will have a more comprehensive genomic profiling of their tumour. Patients with actionable genomic alterations in their tumour may have the possibility to try precision cancer drugs through IMPRESS-Norway, if standard treatment is no longer an option, and the drugs are available in the study. This might benefit some patients. In addition, it is a good example of a public-private collaboration to establish a national infrastructure for precision oncology. Trial registrations EudraCT: 2020-004414-35, registered 02/19/2021; ClinicalTrial.gov: NCT04817956, registered 03/26/2021.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/therapeutic use , Humans , Medical Oncology , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine , Prospective Studies
16.
Acta Biomater ; 141: 440-453, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34968726

ABSTRACT

Bone regeneration from mesenchymal stromal cells (MSC) is attributed to comprehensive immune modulation mediated by the MSC. However, the temporal and spatial regulation of these immune responses has not yet been described. The aim of the present study was to assess the local and systemic innate immune responses to implantation of biphasic calcium phosphate biomaterial (BCP) alone, or with bone marrow derived MSC (BCP+MSC), in critical-sized calvarial bone defects of Lewis rats. Four weeks after implantation, flow cytometry analysis of innate immune cells revealed increased numbers of circulating classical monocyte-macrophages (MM) and decreased non-classical MM in the BCP+MSC group. At week 8, this differential systemic MM response was associated with an increased presence of local tissue anti-inflammatory macrophages expressing CD68 and CD163 markers (M2-like). In the BCP group without MSC, NK cells increased at weeks 1 and 4, and neutrophils increased in circulation at weeks 2 and 8. At week 8, the increase in number of neutrophils in circulation was associated with decreased local tissue neutrophils, in the BCP+MSC group. Gene expression analysis of tissue biopsies from defects implanted with BCP+MSC, in comparison to BCP alone, revealed upregulated expression of early osteogenesis genes along with macrophage differentiation-related genes at weeks 1 and 8 and neutrophil chemotaxis-related genes at week 1. This study is the first to demonstrate that surgical implantation of BCP or BCP+MSC grafts differentially regulate both systemic and local tissue innate immune responses which enhance bone formation. The results provide new insights into immune mechanisms underlying MSC-mediated bone regeneration. STATEMENT OF SIGNIFICANCE: The suitability of biphasic calcium phosphate and mesenchymal stromal cell construct (BCP+MSC) transplantation is evident from their progress in clinical trials for treating challenging maxillofacial bone defects. But less is known about the overall immune response generated by this surgical process and how it later impacts the bone formation. To this end, it is crucial to understand for both clinicians and researchers, the systemic immune response to transplanting MSC in patients for ensuring both the safety and efficacy of cell therapies. In this study, we used rat calvarial bone defect model and showed that both systemic and local innate immunes responses (monocyte-macrophages and neutrophils) are favorably directed towards enhanced bone formation in BCP+MSC implanted defects, as compared to BCP alone.


Subject(s)
Bone Regeneration , Mesenchymal Stem Cells , Animals , Humans , Hydroxyapatites , Immunity, Innate , Mesenchymal Stem Cells/metabolism , Rats , Rats, Inbred Lew
17.
Cancer Discov ; 12(2): 388-401, 2022 02.
Article in English | MEDLINE | ID: mdl-34789538

ABSTRACT

We generated ex vivo drug-response and multiomics profiling data for a prospective series of 252 samples from 186 patients with acute myeloid leukemia (AML). A functional precision medicine tumor board (FPMTB) integrated clinical, molecular, and functional data for application in clinical treatment decisions. Actionable drugs were found for 97% of patients with AML, and the recommendations were clinically implemented in 37 relapsed or refractory patients. We report a 59% objective response rate for the individually tailored therapies, including 13 complete responses, as well as bridging five patients with AML to allogeneic hematopoietic stem cell transplantation. Data integration across all cases enabled the identification of drug response biomarkers, such as the association of IL15 overexpression with resistance to FLT3 inhibitors. Integration of molecular profiling and large-scale drug response data across many patients will enable continuous improvement of the FPMTB recommendations, providing a paradigm for individualized implementation of functional precision cancer medicine. SIGNIFICANCE: Oncogenomics data can guide clinical treatment decisions, but often such data are neither actionable nor predictive. Functional ex vivo drug testing contributes significant additional, clinically actionable therapeutic insights for individual patients with AML. Such data can be generated in four days, enabling rapid translation through FPMTB.See related commentary by Letai, p. 290.This article is highlighted in the In This Issue feature, p. 275.


Subject(s)
Decision Support Techniques , Leukemia, Myeloid, Acute/drug therapy , Patient Care Team , Precision Medicine , Female , Finland , Humans , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Remission Induction , Survival Analysis
18.
Int J Pharm ; 612: 121296, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34793932

ABSTRACT

Treatment of acute myeloid leukaemia (AML) relies on decades-old drugs, and while recent years have seen some breakthroughs, AML is still characterised by poor prognosis and survival rate. Drug repurposing can expedite the preclinical development of new therapies, and by nanocarrier encapsulation, the number of potentially viable drug candidates can be further expanded. The anti-psychotic drug chlorpromazine (CPZ) has been identified as a candidate for repurposing for AML therapy. Nanoencapsulation may improve the suitability of CPZ for the treatment of AML by reducing its effect on the central nervous system. Using the emulsion-evaporation technique, we have developed PEGylated PLGA nanoparticles loaded with CPZ for AML therapy. The nanoparticles were characterised to be between 150 and 300 nm by DLS, of spherical morphology by TEM, with a drug loading of at least 6.0% (w/w). After an initial burst release of adsorbed drug, the remaining 80% of the drug was retained in the PLGA nanoparticles for at least 24 h. The CPZ-loaded nanoparticles had equal cytotoxic potential towards AML cells to free CPZ, but acted more slowly, in line with the protracted drug release. Crucially, nanoparticles injected intravenously into zebrafish larvae did not accumulate in the brain, and nanoencapsulation also prevented CPZ from crossing an artificial membrane model. This demonstrates that the purpose for nanoencapsulation of CPZ is fulfilled, namely avoiding effects on the central nervous system while retaining the anti-AML activity of the drug.


Subject(s)
Chlorpromazine , Nanoparticles , Animals , Drug Liberation , Drug Repositioning , Zebrafish
19.
J Thromb Haemost ; 20(3): 700-704, 2022 03.
Article in English | MEDLINE | ID: mdl-34817130

ABSTRACT

BACKGROUND: Vaccine-induced immune thrombotic thrombocytopenia (VITT) has so far only been reported after adenovirus vector severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines. OBJECTIVE: We report findings in a 25-year-old woman who presented with thrombocytopenia, venous thrombosis, elevated D-dimer levels, and high levels of platelet-activating antibodies to platelet factor 4-polyanion complexes 10 days after Gardasil 9 vaccination for human papillomavirus (HPV). The patient exhibited clinical and laboratory features in line with the recently defined VITT syndrome, described after adenoviral vector vaccination to prevent coronavirus disease 2019. CONCLUSION: We report a case of VITT following HPV vaccination. This should raise awareness of the possibility of VITT also occurring after other vaccines, not exclusively adenoviral vector-based SARS-CoV-2 vaccines.


Subject(s)
COVID-19 , Papillomavirus Infections , Thrombocytopenia , Thrombosis , Adult , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Female , Humans , SARS-CoV-2 , Thrombocytopenia/chemically induced , Thrombocytopenia/diagnosis , Thrombosis/etiology , Vaccination/adverse effects
20.
Eur J Haematol ; 107(6): 617-623, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34418168

ABSTRACT

OBJECTIVES: Treatment-free remission (TFR) has emerged as a treatment goal in chronic myeloid leukemia in the chronic phase (CML-CP). Attempts to increase proportion of patients achieving TFR include combination of tyrosine kinase inhibitors (TKI) and other drugs. Interferon-α in addition to TKI has shown promising efficacy but with dose-dependent toxicity and discontinuations. NordCML007 was initiated to study the efficacy and safety of low dose pegylated IFN-α (PegIFN-α) in combination with dasatinib (DAS) in CML-CP. METHODS: Forty patients with newly diagnosed CML-CP were given DAS upfront. After month 3 (M3) 15 µg/wk of PegIFN-α was added and increased to 25 µg/wk from M7 until M15. DAS treatment was continued and adverse events and BCR-ABL1 qRT-PCR values were reported yearly after M24. Results from M1 to M18 have previously been published, and here we present long-term data. RESULTS: After 5 years of follow-up, there were no suspected unexpected serious adverse reactions, no increase in serosal effusions, no disease progressions and no CML-related deaths. Rates of MR3.0 (MMR), MR4.0 and MR4.5 were 84.6%, 64.1% and 51.3% respectively at M60, and 95% of patients reached MMR at some point during the study. CONCLUSION: Initial addition of PegIFN-α to DAS shows good long-term efficacy without increased toxicity.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Dasatinib/therapeutic use , Interferon-alpha/therapeutic use , Leukemia, Myeloid, Chronic-Phase/drug therapy , Polyethylene Glycols/therapeutic use , Adult , Aged , Dasatinib/administration & dosage , Female , Follow-Up Studies , Humans , Interferon-alpha/administration & dosage , Male , Middle Aged , Polyethylene Glycols/administration & dosage , Recombinant Proteins/administration & dosage , Recombinant Proteins/therapeutic use , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...