Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Infect Immun ; 91(11): e0021723, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37861312

ABSTRACT

Myeloid phagocytes of the respiratory immune system, such as neutrophils, monocytes, and alveolar macrophages, are essential for immunity to Aspergillus fumigatus, the most common etiologic agent of mold pneumonia worldwide. Following the engulfment of A. fumigatus conidia, fusion of the phagosome with the lysosome is a critical process for killing conidia. TFEB and TFE3 are transcription factors that regulate lysosomal biogenesis under stress and are activated by inflammatory stimuli in macrophages, but it is unknown whether TFEB and TFE3 contribute to anti-Aspergillus immunity during infection. We found that lung neutrophils express TFEB and TFE3, and their target genes were upregulated during A. fumigatus lung infection. In addition, A. fumigatus infection induced nuclear accumulation of TFEB and TFE3 in macrophages in a process regulated by Dectin-1 and CARD9. Genetic deletion of Tfeb and Tfe3 impaired macrophage killing of A. fumigatus conidia. However, in a murine immune-competent Aspergillus infection model with genetic deficiency of Tfeb and Tfe3 in hematopoietic cells, we surprisingly found that lung myeloid phagocytes had no defects in conidial phagocytosis or killing. Loss of TFEB and TFE3 did not impact murine survival or clearance of A. fumigatus from the lungs. Our findings indicate that myeloid phagocytes activate TFEB and TFE3 in response to A. fumigatus, and while this pathway promotes macrophage fungicidal activity in vitro, genetic loss can be functionally compensated in the lung, resulting in no measurable defect in fungal control and host survival.


Subject(s)
Aspergillosis , Pneumonia , Animals , Mice , Aspergillus fumigatus , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Gene Regulatory Networks , Lung , Phagocytes
2.
bioRxiv ; 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37398416

ABSTRACT

Myeloid phagocytes of the respiratory immune system, such as neutrophils, monocytes, and alveolar macrophages, are essential for immunity to Aspergillus fumigatus, the most common etiologic agent of mold pneumonia worldwide. Following engulfment of A. fumigatus conidia, fusion of the phagosome with the lysosome, is a critical process for killing conidia. TFEB and TFE3 are transcription factors that regulate lysosomal biogenesis under stress and are activated by inflammatory stimuli in macrophages, but it is unknown whether TFEB and TFE3 contribute to anti-Aspergillus immunity during infection. We found that lung neutrophils express TFEB and TFE3, and their target genes were upregulated during A. fumigatus lung infection. Additionally, A. fumigatus infection induced nuclear accumulation of TFEB and TFE3 in macrophages in a process regulated by Dectin-1 and CARD9 signaling. Genetic deletion of Tfeb and Tfe3 impaired macrophage killing of A. fumigatus conidia. However, in a murine immune competent Aspergillus infection model with genetic deficiency of Tfeb and Tfe3 in hematopoietic cells, we surprisingly found that lung myeloid phagocytes had no defects in conidial phagocytosis or killing. Loss of TFEB and TFE3 did not impact murine survival or clearance of A. fumigatus from the lungs. Our findings indicate that myeloid phagocytes activate TFEB and TFE3 in response to A. fumigatus, and while this pathway promotes macrophage fungicidal activity in vitro, genetic loss can be functionally compensated at the portal of infection in the lung, resulting in no measurable defect in fungal control and host survival.

3.
Nat Microbiol ; 6(12): 1505-1515, 2021 12.
Article in English | MEDLINE | ID: mdl-34764444

ABSTRACT

Allogeneic haematopoietic cell transplantation (allo-HCT) induces profound shifts in the intestinal bacterial microbiota. The dynamics of intestinal fungi and their impact on clinical outcomes during allo-HCT are not fully understood. Here we combined parallel high-throughput fungal ITS1 amplicon sequencing, bacterial 16S amplicon sequencing and fungal cultures of 1,279 faecal samples from a cohort of 156 patients undergoing allo-HCT to reveal potential trans-kingdom dynamics and their association with patient outcomes. We saw that the overall density and the biodiversity of intestinal fungi were stable during allo-HCT but the species composition changed drastically from day to day. We identified a subset of patients with fungal dysbiosis defined by culture positivity (n = 53) and stable expansion of Candida parapsilosis complex species (n = 19). They presented with distinct trans-kingdom microbiota profiles, characterized by a decreased intestinal bacterial biomass. These patients had worse overall survival and higher transplant-related mortality independent of candidaemia. This expands our understanding of the clinical significance of the mycobiota and suggests that targeting fungal dysbiosis may help to improve long-term patient survival.


Subject(s)
Candida parapsilosis/growth & development , Gastrointestinal Microbiome , Hematopoietic Stem Cell Transplantation , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , Candida parapsilosis/genetics , Candida parapsilosis/physiology , Dysbiosis/immunology , Dysbiosis/microbiology , Feces/microbiology , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Humans , Intestines/immunology , Intestines/microbiology , Prospective Studies , Transplantation, Homologous , Treatment Outcome
4.
Nat Commun ; 11(1): 4475, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32901029

ABSTRACT

Tissue resident memory CD8+ T cells (Trm) are poised for immediate reactivation at sites of pathogen entry and provide optimal protection of mucosal surfaces. The intestinal tract represents a portal of entry for many infectious agents; however, to date specific strategies to enhance Trm responses at this site are lacking. Here, we present TMDI (Transient Microbiota Depletion-boosted Immunization), an approach that leverages antibiotic treatment to temporarily restrain microbiota-mediated colonization resistance, and favor intestinal expansion to high densities of an orally-delivered Listeria monocytogenes strain carrying an antigen of choice. By augmenting the local chemotactic gradient as well as the antigenic load, this procedure generates a highly expanded pool of functional, antigen-specific intestinal Trm, ultimately enhancing protection against infectious re-challenge in mice. We propose that TMDI is a useful model to dissect the requirements for optimal Trm responses in the intestine, and also a potential platform to devise novel mucosal vaccination approaches.


Subject(s)
Gastrointestinal Microbiome/immunology , Immunity, Mucosal , Administration, Oral , Animals , Antigens/administration & dosage , CD8-Positive T-Lymphocytes/immunology , Chemotaxis/immunology , Female , Gastrointestinal Microbiome/drug effects , Host Microbial Interactions/immunology , Immunity, Mucosal/drug effects , Immunologic Memory , Listeria monocytogenes/growth & development , Listeria monocytogenes/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin/administration & dosage , Streptomycin/administration & dosage
5.
Cell Host Microbe ; 28(1): 104-116.e4, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32485165

ABSTRACT

Aspergillus fumigatus, a ubiquitous mold, is a common cause of invasive aspergillosis (IA) in immunocompromised patients. Host defense against IA relies on lung-infiltrating neutrophils and monocyte-derived dendritic cells (Mo-DCs). Here, we demonstrate that plasmacytoid dendritic cells (pDCs), which are prototypically antiviral cells, participate in innate immune crosstalk underlying mucosal antifungal immunity. Aspergillus-infected murine Mo-DCs and neutrophils recruited pDCs to the lung by releasing the CXCR3 ligands, CXCL9 and CXCL10, in a Dectin-1 and Card9- and type I and III interferon signaling-dependent manner, respectively. During aspergillosis, circulating pDCs entered the lung in response to CXCR3-dependent signals. Via targeted pDC ablation, we found that pDCs were essential for host defense in the presence of normal neutrophil and Mo-DC numbers. Although interactions between pDC and fungal cells were not detected, pDCs regulated neutrophil NADPH oxidase activity and conidial killing. Thus, pDCs act as positive feedback amplifiers of neutrophil effector activity against inhaled mold conidia.


Subject(s)
Aspergillosis/immunology , Dendritic Cells/immunology , Neutrophils/immunology , Receptors, CXCR3/immunology , Spores, Fungal/immunology , Animals , Aspergillus fumigatus/immunology , CARD Signaling Adaptor Proteins/immunology , Chemokine CXCL10/immunology , Chemokine CXCL9/immunology , Immunity, Innate , Immunocompromised Host , Interferons/immunology , Lectins, C-Type/immunology , Lung/immunology , Lung/microbiology , Lymphocytes/immunology , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/immunology , Receptors, CCR2/immunology , Receptors, CXCR3/genetics , Signal Transduction/immunology
6.
Cell Host Microbe ; 28(1): 134-146.e4, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32492369

ABSTRACT

Bacteria belonging to the Lachnospiraceae family are abundant, obligate anaerobic members of the microbiota in healthy humans. Lachnospiraceae impact their hosts by producing short-chain fatty acids, converting primary to secondary bile acids, and facilitating colonization resistance against intestinal pathogens. To increase our understanding of genomic and functional diversity between members of this family, we cultured 273 Lachnospiraceae isolates representing 11 genera and 27 species from human donors and performed whole-genome sequencing assembly and annotation. This analysis revealed substantial inter- and intra-species diversity in pathways that likely influence an isolate's ability to impact host health. These differences are likely to impact colonization resistance through lantibiotic expression or intestinal acidification, influence host mucosal immune cells and enterocytes via butyrate production, or contribute to synergism within a consortium by heterogenous polysaccharide metabolism. Identification of these specific functions could facilitate development of probiotic bacterial consortia that drive and/or restore in vivo microbiome functions.


Subject(s)
Clostridiales/classification , Clostridiales/genetics , Gastrointestinal Microbiome/genetics , Genetic Variation , Metabolic Networks and Pathways/genetics , Feces/microbiology , Genome, Bacterial , Humans , Metagenomics , Phylogeny , RNA, Ribosomal, 16S/genetics , Whole Genome Sequencing
7.
Infect Immun ; 88(4)2020 03 23.
Article in English | MEDLINE | ID: mdl-31964746

ABSTRACT

The complex bacterial populations that constitute the gut microbiota can harbor antibiotic resistance genes (ARGs), including those encoding ß-lactamase enzymes (BLA), which degrade commonly prescribed antibiotics such as ampicillin. The prevalence of such genes in commensal bacteria has been increased in recent years by the wide use of antibiotics in human populations and in livestock. While transfer of ARGs between bacterial species has well-established dramatic public health implications, these genes can also function in trans within bacterial consortia, where antibiotic-resistant bacteria can provide antibiotic-sensitive neighbors with leaky protection from drugs, as shown both in vitro and in vivo, in models of lung and subcutaneous coinfection. However, whether the expression of ARGs by harmless commensal bacterial species can destroy antibiotics in the intestinal lumen and shield antibiotic-sensitive pathogens is unknown. To address this question, we colonized germfree or wild-type mice with a model intestinal commensal strain of Escherichia coli that produces either functional or defective BLA. Mice were subsequently infected with Listeria monocytogenes or Clostridioides difficile, followed by treatment with oral ampicillin. The production of functional BLA by commensal E. coli markedly reduced clearance of these pathogens and enhanced systemic dissemination during ampicillin treatment. Pathogen resistance was independent of ARG acquisition via horizontal gene transfer but instead relied on antibiotic degradation in the intestinal lumen by BLA. We conclude that commensal bacteria that have acquired ARGs can mediate shielding of pathogens from the bactericidal effects of antibiotics.


Subject(s)
Ampicillin/metabolism , Anti-Bacterial Agents/metabolism , Clostridioides difficile/drug effects , Escherichia coli/metabolism , Intestines/microbiology , Listeria monocytogenes/drug effects , beta-Lactamases/metabolism , Ampicillin/administration & dosage , Ampicillin/pharmacology , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Clostridioides difficile/growth & development , Drug Resistance, Bacterial , Escherichia coli/enzymology , Escherichia coli/growth & development , Hydrolysis , Mice , Microbial Interactions , Microbial Viability/drug effects
8.
Infect Immun ; 88(4)2020 03 23.
Article in English | MEDLINE | ID: mdl-31907198

ABSTRACT

Antibiotic treatment of patients undergoing complex medical treatments can deplete commensal bacterial strains from the intestinal microbiota, thereby reducing colonization resistance against a wide range of antibiotic-resistant pathogens. Loss of colonization resistance can lead to marked expansion of vancomycin-resistant Enterococcus faecium (VRE), Klebsiella pneumoniae, and Escherichia coli in the intestinal lumen, predisposing patients to bloodstream invasion and sepsis. The impact of intestinal domination by these antibiotic-resistant pathogens on mucosal immune defenses and epithelial and mucin-mediated barrier integrity is unclear. We used a mouse model to study the impact of intestinal domination by antibiotic-resistant bacterial species and strains on the colonic mucosa. Intestinal colonization with K. pneumoniae, Proteus mirabilis, or Enterobacter cloacae promoted greater recruitment of neutrophils to the colonic mucosa. To test the hypothesis that the residual microbiota influences the severity of colitis caused by infection with Clostridioides difficile, we coinfected mice that were colonized with ampicillin-resistant bacteria with a virulent strain of C. difficile and monitored colonization and pathogenesis. Despite the compositional differences in the gut microbiota, the severity of C. difficile infection (CDI) and mortality did not differ significantly between mice colonized with different ampicillin-resistant bacterial species. Our results suggest that the virulence mechanisms enabling CDI and epithelial destruction outweigh the relatively minor impact of less-virulent antibiotic-resistant intestinal bacteria on the outcome of CDI.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Clostridium Infections/physiopathology , Drug Resistance, Bacterial , Enterobacter cloacae/growth & development , Enterobacteriaceae Infections/complications , Klebsiella pneumoniae/growth & development , Proteus mirabilis/growth & development , Animals , Clostridium Infections/microbiology , Colitis/microbiology , Colitis/physiopathology , Disease Models, Animal , Enterobacter cloacae/drug effects , Enterobacteriaceae Infections/drug therapy , Klebsiella pneumoniae/drug effects , Mice , Microbial Interactions , Proteus mirabilis/drug effects , Survival Analysis
9.
Nature ; 572(7771): 665-669, 2019 08.
Article in English | MEDLINE | ID: mdl-31435014

ABSTRACT

Intestinal commensal bacteria can inhibit dense colonization of the gut by vancomycin-resistant Enterococcus faecium (VRE), a leading cause of hospital-acquired infections1,2. A four-strained consortium of commensal bacteria that contains Blautia producta BPSCSK can reverse antibiotic-induced susceptibility to VRE infection3. Here we show that BPSCSK reduces growth of VRE by secreting a lantibiotic that is similar to the nisin-A produced by Lactococcus lactis. Although the growth of VRE is inhibited by BPSCSK and L. lactis in vitro, only BPSCSK colonizes the colon and reduces VRE density in vivo. In comparison to nisin-A, the BPSCSK lantibiotic has reduced activity against intestinal commensal bacteria. In patients at high risk of VRE infection, high abundance of the lantibiotic gene is associated with reduced density of E. faecium. In germ-free mice transplanted with patient-derived faeces, resistance to VRE colonization correlates with abundance of the lantibiotic gene. Lantibiotic-producing commensal strains of the gastrointestinal tract reduce colonization by VRE and represent potential probiotic agents to re-establish resistance to VRE.


Subject(s)
Bacteriocins/metabolism , Bacteriocins/pharmacology , Enterococcus faecium/drug effects , Lactococcus lactis/metabolism , Probiotics , Vancomycin Resistance/drug effects , Vancomycin-Resistant Enterococci/drug effects , Animals , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteriocins/genetics , Bacteriocins/isolation & purification , Enterococcus faecium/growth & development , Enterococcus faecium/isolation & purification , Feces/microbiology , Female , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/microbiology , Germ-Free Life , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Humans , Lactococcus lactis/chemistry , Lactococcus lactis/growth & development , Lactococcus lactis/physiology , Mice , Microbial Sensitivity Tests , Microbiota/genetics , Nisin/chemistry , Nisin/pharmacology , Symbiosis/drug effects , Vancomycin/pharmacology , Vancomycin-Resistant Enterococci/growth & development , Vancomycin-Resistant Enterococci/isolation & purification
10.
Sci Transl Med ; 10(460)2018 09 26.
Article in English | MEDLINE | ID: mdl-30257956

ABSTRACT

Antibiotic treatment can deplete the commensal bacteria of a patient's gut microbiota and, paradoxically, increase their risk of subsequent infections. In allogeneic hematopoietic stem cell transplantation (allo-HSCT), antibiotic administration is essential for optimal clinical outcomes but significantly disrupts intestinal microbiota diversity, leading to loss of many beneficial microbes. Although gut microbiota diversity loss during allo-HSCT is associated with increased mortality, approaches to reestablish depleted commensal bacteria have yet to be developed. We have initiated a randomized, controlled clinical trial of autologous fecal microbiota transplantation (auto-FMT) versus no intervention and have analyzed the intestinal microbiota profiles of 25 allo-HSCT patients (14 who received auto-FMT treatment and 11 control patients who did not). Changes in gut microbiota diversity and composition revealed that the auto-FMT intervention boosted microbial diversity and reestablished the intestinal microbiota composition that the patient had before antibiotic treatment and allo-HSCT. These results demonstrate the potential for fecal sample banking and posttreatment remediation of a patient's gut microbiota after microbiota-depleting antibiotic treatment during allo-HSCT.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Biodiversity , Gastrointestinal Microbiome/drug effects , Hematopoietic Stem Cell Transplantation , Humans , Longitudinal Studies , Transplantation, Autologous
SELECTION OF CITATIONS
SEARCH DETAIL
...