Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
FEMS Microbiol Lett ; 366(1)2019 01 01.
Article in English | MEDLINE | ID: mdl-30534987

ABSTRACT

A global census of marine microbial life has been underway over the past several decades. During this period, there have been scientific breakthroughs in estimating microbial diversity and understanding microbial functioning and ecology. It is estimated that the ocean, covering 71% of the earth's surface with its estimated volume of about 2 × 1018 m3 and an average depth of 3800 m, hosts the largest population of microbes on Earth. More than 2 million eukaryotic and prokaryotic species are thought to thrive both in the ocean and on its surface. Prokaryotic cell abundances can reach densities of up to 1012 cells per millilitre, exceeding eukaryotic densities of around 106 cells per millilitre of seawater. Besides their large numbers and abundance, marine microbial assemblages and their organic catalysts (enzymes) have a largely underestimated value for their use in the development of industrial products and processes. In this perspective article, we identified critical gaps in knowledge and technology to fast-track this development. We provided a general overview of the presumptive microbial assemblages in oceans, and an estimation of what is known and the enzymes that have been currently retrieved. We also discussed recent advances made in this area by the collaborative European Horizon 2020 project 'INMARE'.


Subject(s)
Aquatic Organisms/enzymology , Oceans and Seas , Water Microbiology , Bacteria/enzymology , Biodiversity
4.
ACS Chem Biol ; 13(1): 225-234, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29182315

ABSTRACT

Esterases receive special attention because of their wide distribution in biological systems and environments and their importance for physiology and chemical synthesis. The prediction of esterases' substrate promiscuity level from sequence data and the molecular reasons why certain such enzymes are more promiscuous than others remain to be elucidated. This limits the surveillance of the sequence space for esterases potentially leading to new versatile biocatalysts and new insights into their role in cellular function. Here, we performed an extensive analysis of the substrate spectra of 145 phylogenetically and environmentally diverse microbial esterases, when tested with 96 diverse esters. We determined the primary factors shaping their substrate range by analyzing substrate range patterns in combination with structural analysis and protein-ligand simulations. We found a structural parameter that helps rank (classify) the promiscuity level of esterases from sequence data at 94% accuracy. This parameter, the active site effective volume, exemplifies the topology of the catalytic environment by measuring the active site cavity volume corrected by the relative solvent accessible surface area (SASA) of the catalytic triad. Sequences encoding esterases with active site effective volumes (cavity volume/SASA) above a threshold show greater substrate spectra, which can be further extended in combination with phylogenetic data. This measure provides also a valuable tool for interrogating substrates capable of being converted. This measure, found to be transferred to phosphatases of the haloalkanoic acid dehalogenase superfamily and possibly other enzymatic systems, represents a powerful tool for low-cost bioprospecting for esterases with broad substrate ranges, in large scale sequence data sets.


Subject(s)
Esterases/chemistry , Esterases/metabolism , Phylogeny , Catalytic Domain , Substrate Specificity
5.
Nat Biotechnol ; 35(8): 725-731, 2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28787424

ABSTRACT

We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.


Subject(s)
Genome, Archaeal/genetics , Genomics/methods , Metagenomics/methods , Genome, Bacterial/genetics , Genomics/standards , Metagenomics/standards , Sequence Analysis, DNA
6.
Front Microbiol ; 8: 202, 2017.
Article in English | MEDLINE | ID: mdl-28243229

ABSTRACT

The cell wall of free-living bacteria consists of peptidoglycan (PG) and is critical for maintenance of shape as dissolved solutes cause osmotic pressure and challenge cell integrity. Surprisingly, the subdivision 4 of the phylum Verrucomicrobia appears to be exceptional in this respect. Organisms of this subdivision are described to be devoid of muramic or diaminopimelic acid (DAP), usually found as components of PG in bacterial cell walls. Here we describe three novel bacterial strains from a freshwater lake, IG15T, IG16bT, and IG31T, belonging to a new genus in the subdivision 4 of Verrucomicrobia which we found to possess PG as part of their cell walls. Biochemical analysis revealed the presence of DAP not only in these novel strains, but also in Opitutus terrae PB90-1T, the closest described relative of strains IG15T, IG16bT, and IG31T. Furthermore, we found that nearly all genes necessary for peptidoglycan synthesis are present in genomes of subdivision 4 members, as well as in the complete genome sequence of strain IG16bT. In addition, we isolated and visualized PG-sacculi for strain IG16bT. Thus, our results challenge the concept of peptidoglycan-less free-living bacteria. Our polyphasic taxonomy approach places the novel strains in a new genus within the family Opitutaceae, for which the name Lacunisphaera gen. nov. is proposed. Strain designations for IG15T, IG16bT and IG31T are Lacunisphaera parvula sp. nov. (=DSM 26814 = LMG 29468), L. limnophila sp. nov. (=DSM 26815 = LMG 29469) and L. anatis sp. nov. (=DSM 103142 = LMG 29578) respectively, with L. limnophila IG16bT being the type species of the genus.

7.
Environ Microbiol ; 19(4): 1476-1489, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28198090

ABSTRACT

Insects and nematodes represent the most species-rich animal taxa and they occur together in a variety of associations. Necromenic nematodes of the genus Pristionchus are found on scarab beetles with more than 30 species known from worldwide samplings. However, little is known about the dynamics and succession of nematodes and bacteria during the decomposition of beetle carcasses. Here, we study nematode and bacterial succession of the decomposing rhinoceros beetle Oryctes borbonicus on La Réunion Island. We show that Pristionchus pacificus exits the arrested dauer stage seven days after the beetles´ deaths. Surprisingly, new dauers are seen after 11 days, suggesting that some worms return to the dauer stage after one reproductive cycle. We used high-throughput sequencing of the 16S rRNA genes of decaying beetles, beetle guts and nematodes to study bacterial communities in comparison to soil. We find that soil environments have the most diverse bacterial communities. The bacterial community of living and decaying beetles are more stable but one single bacterial family dominates the microbiome of decaying beetles. In contrast, the microbiome of nematodes is relatively similar even across different families. This study represents the first characterization of the dynamics of nematode-bacterial interactions during the decomposition of insects.


Subject(s)
Bacterial Physiological Phenomena , Coleoptera/parasitology , Microbiota , Nematoda/microbiology , Animals , Coleoptera/classification , Coleoptera/microbiology , Host-Parasite Interactions , Nematoda/genetics , RNA, Ribosomal, 16S , Reunion , Species Specificity
8.
Springerplus ; 5(1): 772, 2016.
Article in English | MEDLINE | ID: mdl-27386258

ABSTRACT

Culture collections contain indispensable information about the microorganisms preserved in their repositories, such as taxonomical descriptions, origins, physiological and biochemical characteristics, bibliographic references, etc. However, information currently accessible in databases rarely adheres to common standard protocols. The resultant heterogeneity between culture collections, in terms of both content and format, notably hampers microorganism-based research and development (R&D). The optimized exploitation of these resources thus requires standardized, and simplified, access to the associated information. To this end, and in the interest of supporting R&D in the fields of agriculture, health and biotechnology, a pan-European distributed research infrastructure, MIRRI, including over 40 public culture collections and research institutes from 19 European countries, was established. A prime objective of MIRRI is to unite and provide universal access to the fragmented, and untapped, resources, information and expertise available in European public collections of microorganisms; a key component of which is to develop a dynamic Information System. For the first time, both culture collection curators as well as their users have been consulted and their feedback, concerning the needs and requirements for collection databases and data accessibility, utilised. Users primarily noted that databases were not interoperable, thus rendering a global search of multiple databases impossible. Unreliable or out-of-date and, in particular, non-homogenous, taxonomic information was also considered to be a major obstacle to searching microbial data efficiently. Moreover, complex searches are rarely possible in online databases thus limiting the extent of search queries. Curators also consider that overall harmonization-including Standard Operating Procedures, data structure, and software tools-is necessary to facilitate their work and to make high-quality data easily accessible to their users. Clearly, the needs of culture collection curators coincide with those of users on the crucial point of database interoperability. In this regard, and in order to design an appropriate Information System, important aspects on which the culture collection community should focus include: the interoperability of data sets with the ontologies to be used; setting best practice in data management, and the definition of an appropriate data standard.

9.
Front Microbiol ; 7: 387, 2016.
Article in English | MEDLINE | ID: mdl-27065959

ABSTRACT

Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage. Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus. Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche within its microbiota. Our data suggest the presence of a sponge-specific lineage of Pseudovibrio. The reduction in genome size and the loss of some systems potentially used to successfully enter the host, leads to the hypothesis that P. axinellae strain AD2 may be a lineage that presents an ancient association with the host and that may be vertically transmitted to the progeny.

10.
Front Microbiol ; 6: 1524, 2015.
Article in English | MEDLINE | ID: mdl-26779174

ABSTRACT

Determining which microbial taxa are out there, where they live, and what they are doing is a driving approach in marine microbial ecology. The importance of these questions is underlined by concerted, large-scale, and global ocean sampling initiatives, for example the International Census of Marine Microbes, Ocean Sampling Day, or Tara Oceans. Given decades of effort, we know that the large majority of marine Bacteria and Archaea belong to about a dozen phyla. In addition to the classically culturable Bacteria and Archaea, at least 50 "clades," at different taxonomic depths, exist. These account for the majority of marine microbial diversity, but there is still an underexplored and less abundant portion remaining. We refer to these hitherto unrecognized clades as unknown, as their boundaries, names, and classifications are not available. In this work, we were able to characterize up to 92 of these unknown clades found within the bacterial and archaeal phylogenetic diversity currently reported for marine water column environments. We mined the SILVA 16S rRNA gene datasets for sequences originating from the marine water column. Instead of the usual subjective taxa delineation and nomenclature methods, we applied the candidate taxonomic unit (CTU) circumscription system, along with a standardized nomenclature to the sequences in newly constructed phylogenetic trees. With this new phylogenetic and taxonomic framework, we performed an analysis of ICoMM rRNA gene amplicon datasets to gain insights into the global distribution of the new marine clades, their ecology, biogeography, and interaction with oceanographic variables. Most of the new clades we identified were interspersed by known taxa with cultivated members, whose genome sequences are available. This result encouraged us to perform metabolic predictions for the novel marine clades using the PICRUSt approach. Our work also provides an update on the taxonomy of several phyla and widely known marine clades as our CTU approach breaks down these randomly lumped clades into smaller objectively calculated subgroups. Finally, all taxa were classified and named following standards compatible with the Bacteriological Code rules, enhancing their digitization, and comparability with future microbial ecological and taxonomy studies.

11.
Mar Drugs ; 12(12): 5960-78, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25513851

ABSTRACT

The search for new antimicrobial compounds has gained added momentum in recent years, paralleled by the exponential rise in resistance to most known classes of current antibiotics. While modifications of existing drugs have brought some limited clinical success, there remains a critical need for new classes of antimicrobial compound to which key clinical pathogens will be naive. This has provided the context and impetus to marine biodiscovery programmes that seek to isolate and characterize new activities from the aquatic ecosystem. One new antibiotic to emerge from these initiatives is the antibacterial compound tropodithietic acid (TDA). The aim of this study was to provide insight into the bioactivity of and the factors governing the production of TDA in marine Pseudovibrio isolates from a collection of marine sponges. The TDA produced by these Pseudovibrio isolates exhibited potent antimicrobial activity against a broad spectrum of clinical pathogens, while TDA tolerance was frequent in non-TDA producing marine isolates. Comparative genomics analysis suggested a high degree of conservation among the tda biosynthetic clusters while expression studies revealed coordinated regulation of TDA synthesis upon transition from log to stationary phase growth, which was not induced by TDA itself or by the presence of the C10-acyl homoserine lactone quorum sensing signal molecule.


Subject(s)
Porifera/chemistry , Tropolone/analogs & derivatives , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Tropolone/chemistry
12.
FEMS Microbiol Ecol ; 81(2): 373-85, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22416918

ABSTRACT

The Global Ocean Sampling (GOS) expedition is currently the largest and geographically most comprehensive metagenomic dataset, including samples from the Atlantic, Pacific, and Indian Oceans. This study makes use of the wide range of environmental conditions and habitats encompassed within the GOS sites in order to investigate the ecological structuring of bacterial and archaeal taxon ranks. Community structures based on taxonomically classified 16S ribosomal RNA (rRNA) gene fragments at phylum, class, order, family, and genus rank levels were examined using multivariate statistical analysis, and the results were inspected in the context of oceanographic environmental variables and structured habitat classifications. At all taxon rank levels, community structures of neritic, oceanic, estuarine biomes, as well as other exotic biomes (salt marsh, lake, mangrove), were readily distinguishable from each other. A strong structuring of the communities with chlorophyll a concentration and a weaker yet significant structuring with temperature and salinity were observed. Furthermore, there were significant correlations between community structures and habitat classification. These results were used for further investigation of one-to-one relationships between taxa and environment and provided indications for ecological preferences shaped by primary production for both cultured and uncultured bacterial and archaeal clades.


Subject(s)
Archaea/classification , Bacteria/classification , Metagenomics , Seawater/microbiology , Archaea/genetics , Bacteria/genetics , Chlorophyll/analysis , Chlorophyll A , Ecology , Ecosystem , Genes, rRNA , Geography , Multivariate Analysis , Oceans and Seas , RNA, Ribosomal, 16S/genetics
13.
Microb Biotechnol ; 3(5): 583-94, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21255355

ABSTRACT

The marine organism Rhodopirellula baltica is a representative of the globally distributed phylum Planctomycetes whose members exhibit an intriguing lifestyle and cell morphology. The analysis of R. baltica's genome has revealed many biotechnologically promising features including a set of unique sulfatases and C1-metabolism genes. Salt resistance and the potential for adhesion in the adult phase of the cell cycle were observed during cultivation. To promote the understanding of this model organism and to specify the functions of potentially useful genes, gene expression throughout a growth curve was monitored using a whole genome microarray approach. Transcriptional profiling suggests that a large number of hypothetical proteins are active within the cell cycle and in the formation of the different cell morphologies. Numerous genes with potential biotechnological applications were found to be differentially regulated, revealing further characteristics of their functions and regulation mechanisms. More specifically, the experiments shed light on the expression patterns of genes belonging to the organism's general stress response, those involved in the reorganization of its genome and those effecting morphological changes. These transcriptomic results contribute to a better understanding of thus far unknown molecular elements of cell biology. Further, they pave the way for the biotechnological exploitation of R. baltica's distinctive metabolic features as a step towards sourcing the phylum Planctomycetes at large.


Subject(s)
Bacteria/growth & development , Bacteria/genetics , Gene Expression Profiling , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Cycle , Gene Expression Regulation, Bacterial , Models, Biological
14.
BMC Bioinformatics ; 9: 459, 2008 Oct 28.
Article in English | MEDLINE | ID: mdl-18957118

ABSTRACT

BACKGROUND: Modern sequencing technologies allow rapid sequencing and bioinformatic analysis of genomes and metagenomes. With every new sequencing project a vast number of new proteins become available with many genes remaining functionally unclassified based on evidences from sequence similarities alone. Extending similarity searches with gene pattern approaches, defined as genes sharing a distinct genomic neighbourhood, have shown to significantly improve the number of functional assignments. Further functional evidences can be gained by correlating these gene patterns with prevailing environmental parameters. MetaMine was developed to approach the large pool of unclassified proteins by searching for recurrent gene patterns across habitats based on key genes. RESULTS: MetaMine is an interactive data mining tool which enables the detection of gene patterns in an environmental context. The gene pattern search starts with a user defined environmentally interesting key gene. With this gene a BLAST search is carried out against the Microbial Ecological Genomics DataBase (MEGDB) containing marine genomic and metagenomic sequences. This is followed by the determination of all neighbouring genes within a given distance and a search for functionally equivalent genes. In the final step a set of common genes present in a defined number of distinct genomes is determined. The gene patterns found are associated with their individual pattern instances describing gene order and directions. They are presented together with information about the sample and the habitat. MetaMine is implemented in Java and provided as a client/server application with a user-friendly graphical user interface. The system was evaluated with environmentally relevant genes related to the methane-cycle and carbon monoxide oxidation. CONCLUSION: MetaMine offers a targeted, semi-automatic search for gene patterns based on expert input. The graphical user interface of MetaMine provides a user-friendly overview of the computed gene patterns for further inspection in an ecological context. Prevailing biological processes associated with a key gene can be used to infer new annotations and shape hypotheses to guide further analyses. The use-cases demonstrate that meaningful gene patterns can be quickly detected using MetaMine.MetaMine is freely available for academic use from http://www.megx.net/metamine.


Subject(s)
Algorithms , Computational Biology/methods , Databases, Genetic , Ecosystem , Multigene Family/genetics , Software , Pattern Recognition, Automated
15.
ISME J ; 1(5): 419-35, 2007 Sep.
Article in English | MEDLINE | ID: mdl-18043661

ABSTRACT

Planctomycetes are widely distributed in marine environments, where they supposedly play a role in carbon recycling. To deepen our understanding about the ecology of this sparsely studied phylum six planctomycete fosmids from two marine upwelling systems were investigated and compared with all available planctomycete genomic sequences including the as yet unpublished near-complete genomes of Blastopirellula marina DSM 3645(T) and Planctomyces maris DSM 8797(T). High numbers of sulfatase genes (41-109) were found on all marine planctomycete genomes and on two fosmids (2). Furthermore, C1 metabolism genes otherwise only known from methanogenic Archaea and methylotrophic Proteobacteria were found on two fosmids and all planctomycete genomes, except for 'Candidatus Kuenenia stuttgartiensis'. Codon usage analysis indicated high expression levels for some of these genes. In addition, novel large families of planctomycete-specific paralogs with as yet unknown functions were identified, which are notably absent from the genome of 'Candidatus Kuenenia stuttgartiensis'. The high numbers of sulfatases in marine planctomycetes characterizes them as specialists for the initial breakdown of sulfatated heteropolysaccharides and indicate their importance for recycling carbon from these compounds. The almost ubiquitous presence of C1 metabolism genes among Planctomycetes together with codon usage analysis and information from the genomes suggest a general importance of these genes for Planctomycetes other than formaldehyde detoxification. The notable absence of these genes in Candidatus K. stuttgartiensis plus the surprising lack of almost any planctomycete-specific gene within this organism reveals an unexpected distinctiveness of anammox bacteria from all other Planctomycetes.


Subject(s)
Bacteria/genetics , Genome, Bacterial , Seawater/microbiology , Atlantic Ocean , Bacteria/classification , Bacteria/enzymology , Genomic Library , Genomics , Namibia , Oregon , Pacific Ocean , Phylogeny , Sulfatases/genetics
16.
Microbiology (Reading) ; 152(Pt 8): 2443-2453, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16849807

ABSTRACT

Sulphate- or sulphur-reducing bacteria with known or draft genome sequences (Desulfovibrio vulgaris, Desulfovibrio desulfuricans G20, Desulfobacterium autotrophicum [draft], Desulfotalea psychrophila and Geobacter sulfurreducens) all contain sdhCAB or frdCAB gene clusters encoding succinate : quinone oxidoreductases. frdD or sdhD genes are missing. The presence and function of succinate dehydrogenase versus fumarate reductase was studied. Desulfovibrio desulfuricans (strain Essex 6) grew by fumarate respiration or by fumarate disproportionation, and contained fumarate reductase activity. Desulfovibrio vulgaris lacked fumarate respiration and contained succinate dehydrogenase activity. Succinate oxidation by the menaquinone analogue 2,3-dimethyl-1,4-naphthoquinone depended on a proton potential, and the activity was lost after degradation of the proton potential. The membrane anchor SdhC contains four conserved His residues which are known as the ligands for two haem B residues. The properties are very similar to succinate dehydrogenase of the Gram-positive (menaquinone-containing) Bacillus subtilis, which uses a reverse redox loop mechanism in succinate : menaquinone reduction. It is concluded that succinate dehydrogenases from menaquinone-containing bacteria generally require a proton potential to drive the endergonic succinate oxidation. Sequence comparison shows that the SdhC subunit of this type lacks a Glu residue in transmembrane helix IV, which is part of the uncoupling E-pathway in most non-electrogenic FrdABC enzymes.


Subject(s)
Desulfovibrio/enzymology , Succinate Dehydrogenase/physiology , Sulfates/metabolism , Amino Acid Sequence , Desulfovibrio/genetics , Fumarates/metabolism , Molecular Sequence Data , Multigene Family , Oxidation-Reduction , Succinic Acid/metabolism
18.
J Mol Evol ; 59(5): 571-86, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15693614

ABSTRACT

The unexpected presence of archaea-like genes for tetrahydromethanopterin (H4MPT)-dependent enzymes in the completely sequence geiome of the aerobic marine planctomycete Pirellula sp. strain 1 ("Rhodopirellula baltica") and in the currently sequenced genome of the aerobic freshwater planctomycete Gemmata obscuriglobus strain UQM2246 revives the discussion on the origin of these genes in the bacterial domain. We compared the genomic arrangement of these genes in Planctomyetes and methylotrophic proteobacteria and perormed a phylogenetic analysis of the encoded protein sequences to address the question whether the genes have been present in the common ancestor of Bacteria and Archaea or were transferred laterally from the archaeal to the bacterial domain and herein. Although this question could not be solved using the data presented here, some constraints on the evolution of the genes involved in archaeal and )acterial H4MPT-dependent C1-transfer may be proposed: (i) lateral gene transfer (LGT) from Archea to a common ancestor of Proteobacteria and Planctomycetes seems more likely than the presence of the genes in the common ancestor of Bacteria and Archaea; (ii) a single event of interdomain LGT can e favored over two independent events; and (iii) the irchacal donor of the genes might have been a repesentative of the Methanosarcinales. In the bacterial domain, the acquired genes evolved according to distinct environmental and metabolic constraints, reflected by specific rearrangements of gene order, gene recruitment, and gene duplication, with subsequent functional specialization. During the course of evolution, genes were lost from some planctomycete genomes or replaced by orthologous genes from proteobacterial lineages.


Subject(s)
Archaea/enzymology , Archaea/genetics , Bacteria/enzymology , Bacteria/genetics , Genes, Archaeal/genetics , Genes, Bacterial/genetics , Phylogeny , Amidohydrolases/chemistry , Amidohydrolases/genetics , Amino Acid Sequence , Catalysis , Conserved Sequence , Genome, Bacterial , Methylobacterium extorquens/chemistry , Methylobacterium extorquens/genetics , Molecular Sequence Data , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...