Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Eur Heart J Cardiovasc Pharmacother ; 8(4): 402-405, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35179184

ABSTRACT

Coronavirus disease 2019 (COVID-19) is characterized by striking dysregulation of the immune system, with evidence of hyperinflammation, an impaired induction of interferons, and delayed adaptive immune responses. In addition to dysfunctional immune responses, thrombosis is a hallmark of severe COVID-19. Because traditional anticoagulation strategies are associated with increased bleeding, novel strategies that address both the immune and thrombotic dysfunction associated with COVID-19 would be of tremendous benefit. In this commentary, we discuss the unique properties of low dose naltrexone (LDN) which could be leveraged to reduce the immune-mediated thrombotic complications in COVID-19. Mechanistically, LDN can blunt innate immune responses and Toll-like receptor (TLR) signaling, reducing interleukin1 (IL-1), tumor necrosis factor-alpha (TNF-α), and interferon (IFN) levels. Because of the immune-mediated thrombotic mechanisms that underlie COVID-19, we hypothesize that the immune-modulating and known pharmacologic properties of LDN could be leveraged as a novel therapeutic strategy in COVID-19.


Subject(s)
COVID-19 , Thrombosis , Humans , Immunity, Innate , Naltrexone/pharmacology , Thromboinflammation , Thrombosis/prevention & control
2.
J Am Chem Soc ; 142(51): 21382-21392, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33315387

ABSTRACT

Amphiphilic agents, called detergents, are invaluable tools for studying membrane proteins. However, membrane proteins encapsulated by conventional head-to-tail detergents tend to denature or aggregate, necessitating the development of structurally distinct molecules with improved efficacy. Here, a novel class of diastereomeric detergents with a cyclopentane core unit, designated cyclopentane-based maltosides (CPMs), were prepared and evaluated for their ability to solubilize and stabilize several model membrane proteins. A couple of CPMs displayed enhanced behavior compared with the benchmark conventional detergent, n-dodecyl-ß-d-maltoside (DDM), for all the tested membrane proteins including two G-protein-coupled receptors (GPCRs). Furthermore, CPM-C12 was notable for its ability to confer enhanced membrane protein stability compared with the previously developed conformationally rigid NBMs [J. Am. Chem. Soc. 2017, 139, 3072] and LMNG. The effect of the individual CPMs on protein stability varied depending on both the detergent configuration (cis/trans) and alkyl chain length, allowing us draw conclusions on the detergent structure-property-efficacy relationship. Thus, this study not only provides novel detergent tools useful for membrane protein research but also reports on structural features of the detergents critical for detergent efficacy in stabilizing membrane proteins.


Subject(s)
Cyclopentanes/chemistry , Maltose/chemistry , Maltose/pharmacology , Membrane Proteins/chemistry , Drug Design , Glucosides/chemistry , Hydrophobic and Hydrophilic Interactions , Protein Stability/drug effects , Solubility/drug effects , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL