Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 13: 1187585, 2023.
Article in English | MEDLINE | ID: mdl-38023251

ABSTRACT

Lung cancer is the leading cause of cancer death in the United States and worldwide, and a major source of cancer health disparities. Lung cancer cell lines provide key in vitro models for molecular studies of lung cancer development and progression, and for pre-clinical drug testing. To ensure health equity, it is imperative that cell lines representing different lung cancer histological types, carrying different cancer driver genes, and representing different genders, races, and ethnicities should be available. This is particularly relevant for cell lines from Black men, who experience the highest lung cancer mortality in the United States. Here, we undertook a review of the available lung cancer cell lines and their racial and ethnic origin. We noted a marked imbalance in the availability of cell lines from different races and ethnicities. Cell lines from Black patients were strongly underrepresented, and we identified no cell lines from Hispanic/Latin(x) (H/L), American Indian/American Native (AI/AN), or Native Hawaiian or other Pacific Islander (NHOPI) patients. The majority of cell lines were derived from White and Asian patients. Also missing are cell lines representing the cells-of-origin of the major lung cancer histological types, which can be used to model lung cancer development and to study the effects of environmental exposures on lung tissues. To our knowledge, the few available immortalized alveolar epithelial cell lines are all derived from White subjects, and the race and ethnicity of a handful of cell lines derived from bronchial epithelial cells are unknown. The lack of an appropriately diverse collection of lung cancer cell lines and lung cancer cell-of-origin lines severely limits racially and ethnically inclusive lung cancer research. It impedes the ability to develop inclusive models, screen comprehensively for effective compounds, pre-clinically test new drugs, and optimize precision medicine. It thereby hinders the development of therapies that can increase the survival of minority and underserved patients. The noted lack of cell lines from underrepresented groups should constitute a call to action to establish additional cell lines and ensure adequate representation of all population groups in this critical pre-clinical research resource.

2.
Science ; 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34083448

ABSTRACT

DNA methylation is associated with transcriptional repression of eukaryotic genes and transposons, but the downstream mechanism of gene silencing is largely unknown. Here we describe two Arabidopsis methyl-CpG binding domain proteins, MBD5 and MBD6, that are recruited to chromatin by recognition of CG methylation, and redundantly repress a subset of genes and transposons without affecting DNA methylation levels. These methyl-readers recruit a J-domain protein, SILENZIO, that acts as a transcriptional repressor in loss-of-function and gain-of-function experiments. J-domain proteins often serve as co-chaperones with HSP70s. Indeed, we found that SILENZIO's conserved J-domain motif was required for its interaction with HSP70s and for its silencing function. These results uncover an unprecedented role of a molecular chaperone J-domain protein in gene silencing downstream of DNA methylation.

3.
Vox Sang ; 115(6): 525-535, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32378223

ABSTRACT

BACKGROUND: With the recent interest in personalized medicine for cancer patients and immune therapy, the field of cancer vaccines has been resurrected. Previous autologous, whole cell tumour vaccine trials have not produced convincing results due, in part to poor patient selection and inactivation methos that are harsh on the cells. These methods can alter protein structure and antigenic profiles making vaccine candidates ineffective in stimulating immune response to autochthonous tumour cells. MATERIALS AND METHODS: We investigated a novel method for inactivating tumour cells that uses UVA/UVB light and riboflavin (vitamin B2) (RF + UV). RF + UV inactivates the tumour cells' ability to replicate, yet preserves tumour cell integrity and antigenicity. RESULTS: Our results demonstrate that proteins are preserved on the surface of RF + UV-inactivated tumour cells and that they are immunogenic via induction of dendritic cell maturation, increase in IFNγ production and generation of tumour cell-specific IgG. Moreover, when formulated with an adjuvant ('Innocell vaccine') and tested in different murine tumour primary and metastatic disease models, decreased tumour growth, decreased metastatic disease and prolonged survival were observed. In addition, immune cells obtained from tumour tissue following vaccination had decreased exhausted and regulatory T cells, suggesting that activation of intra-tumoural T cells may be playing a role leading to reduced tumour growth. CONCLUSIONS: These data suggest that the RF + UV inactivation of tumour cells may provide an efficacious method for generating autologous whole tumour cell vaccines for use in cancer patients.


Subject(s)
Cancer Vaccines/immunology , Immunotherapy/methods , Neoplasms, Experimental/therapy , Animals , Antigens, Neoplasm/immunology , Cancer Vaccines/adverse effects , Cancer Vaccines/therapeutic use , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Immunogenicity, Vaccine , Mice , Riboflavin/toxicity , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...