Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Clin Chim Acta ; 562: 119841, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964568

ABSTRACT

BACKGROUND: Glycoprotein-2 (GP2) IgA is a predictor of disease severity in primary sclerosing cholangitis (PSC). We examined GP2's occurrence in the biliary tract, the site of inflammation. METHODS: GP2 was analyzed using ELISA, immunoblotting, mass spectrometry, and immunohistochemistry. The samples included: 20 bile and 30 serum samples from PSC patients, 23 bile and 11 serum samples from patients with gallstone disease (GD), 15 bile samples from healthy individuals undergoing liver-donation surgery (HILD), 20 extracts of gallstones (GE) obtained during cholecystectomy, and 101 blood-donor sera. RESULTS: Biliary GP2 concentrations were significantly higher in patients with PSC and GD than in HILD (p < 0.0001). Serum GP2 levels were similar in PSC and GD patients, and controls, but lower than in bile (p < 0.0001). GP2 was detected in all 20 GEs. Mass spectrometry identified GP2 in the bile of 2 randomly selected GD and 2 PSC patients, and in none of 2 HILD samples. GP2 was found in peribiliary glands in 8 out of 12 PSC patients, showing morphological changes in acinar cells, but not in GD-gallbladders. CONCLUSIONS: GP2 is present in bile of PSC and GD patients. It is synthesized in the peribiliary glands of PSC patients, supporting a pathogenic role for biliary GP2 in PSC.

2.
bioRxiv ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38895382

ABSTRACT

Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by ADAR enzymes, is a prevalent and conserved RNA modification. While A-to-I RNA editing is essential in mammals, in Caenorhabditis elegans , it is not, making them invaluable for RNA editing research. In C. elegans , ADR-2 is the sole catalytic A-to-I editing enzyme, and ADR-1 is an RNA editing regulator. ADAR localization is well-studied in humans but not well-established in C. elegans . In this study, we examine the cellular and tissue-specific localization of ADR-2. We show that while ADR-2 is present in most cells in the embryo, at later developmental stages, its expression is both tissue- and cell-type-specific. Additionally, both ADARs are mainly in the nucleus. ADR-2 is adjacent to the chromosomes during the cell cycle. We show that the nuclear localization of endogenous ADR-2 depends on ADBP-1, not ADR-1. In adbp-1 mutant worms, ADR-2 is mislocalized, while ADR-1 is not, leading to decreased editing levels and de-novo editing, mostly in exons, suggesting that ADR-2 is also functional in the cytoplasm. Besides, mutated ADBP-1 affects gene expression. Furthermore, we show that ADR-2 targets adenosines with different surrounding nucleotides in exons and introns. Our findings indicate that ADR-2 cellular localization is highly regulated and affects its function.

3.
Nat Commun ; 15(1): 2638, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528060

ABSTRACT

Protein-protein interactions are at the heart of all cellular processes, with the ribosome emerging as a platform, orchestrating the nascent-chain interplay dynamics. Here, to study the characteristics governing co-translational protein folding and complex assembly, we combine selective ribosome profiling, imaging, and N-terminomics with all-atoms molecular dynamics. Focusing on conserved N-terminal acetyltransferases (NATs), we uncover diverging co-translational assembly pathways, where highly homologous subunits serve opposite functions. We find that only a few residues serve as "hotspots," initiating co-translational assembly interactions upon exposure at the ribosome exit tunnel. These hotspots are characterized by high binding energy, anchoring the entire interface assembly. Alpha-helices harboring hotspots are highly thermolabile, folding and unfolding during simulations, depending on their partner subunit to avoid misfolding. In vivo hotspot mutations disrupted co-translational complexation, leading to aggregation. Accordingly, conservation analysis reveals that missense NATs variants, causing neurodevelopmental and neurodegenerative diseases, disrupt putative hotspot clusters. Expanding our study to include phosphofructokinase, anthranilate synthase, and nucleoporin subcomplex, we employ AlphaFold-Multimer to model the complexes' complete structures. Computing MD-derived interface energy profiles, we find similar trends. Here, we propose a model based on the distribution of interface energy as a strong predictor of co-translational assembly.


Subject(s)
Protein Biosynthesis , Ribosomes , Models, Molecular , Ribosomes/metabolism , Protein Folding , Protein Processing, Post-Translational
4.
New Phytol ; 242(2): 544-557, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38379464

ABSTRACT

The phosphorylation of photosystem II (PSII) and its antenna (LHCII) proteins has been studied, and its involvement in state transitions and PSII repair is known. Yet, little is known about the phosphorylation of photosystem I (PSI) and its antenna (LHCI) proteins. Here, we applied proteomics analysis to generate a map of the phosphorylation sites of the PSI-LHCI proteins in Chlorella ohadii cells that were grown under low or extreme high-light intensities (LL and HL). Furthermore, we analyzed the content of oxidized tryptophans and PSI-LHCI protein degradation products in these cells, to estimate the light-induced damage to PSI-LHCI. Our work revealed the phosphorylation of 17 of 22 PSI-LHCI subunits. The analyses detected the extensive phosphorylation of the LHCI subunits Lhca6 and Lhca7, which is modulated by growth light intensity. Other PSI-LHCI subunits were phosphorylated to a lesser extent, including PsaE, where molecular dynamic simulation proposed that a phosphoserine stabilizes ferredoxin binding. Additionally, we show that HL-grown cells accumulate less oxidative damage and degradation products of PSI-LHCI proteins, compared with LL-grown cells. The significant phosphorylation of Lhca6 and Lhca7 at the interface with other LHCI subunits suggests a physiological role during photosynthesis, possibly by altering light-harvesting characteristics and binding of other subunits.


Subject(s)
Chlorella , Photosystem I Protein Complex , Photosystem I Protein Complex/metabolism , Phosphorylation , Light-Harvesting Protein Complexes/metabolism , Thylakoids/metabolism , Photosystem II Protein Complex/metabolism
6.
PLoS Pathog ; 19(4): e1011284, 2023 04.
Article in English | MEDLINE | ID: mdl-37023213

ABSTRACT

Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that thrives in the inflamed environment of the gingival crevice, and is strongly associated with periodontal disease. The host response to P. gingivalis requires TLR2, however P. gingivalis benefits from TLR2-driven signaling via activation of PI3K. We studied TLR2 protein-protein interactions induced in response to P. gingivalis, and identified an interaction between TLR2 and the cytoskeletal protein vinculin (VCL), confirmed using a split-ubiquitin system. Computational modeling predicted critical TLR2 residues governing the physical association with VCL, and mutagenesis of interface residues W684 and F719, abrogated the TLR2-VCL interaction. In macrophages, VCL knock-down led to increased cytokine production, and enhanced PI3K signaling in response to P. gingivalis infection, effects that correlated with increased intracellular bacterial survival. Mechanistically, VCL suppressed TLR2 activation of PI3K by associating with its substrate PIP2. P. gingivalis induction of TLR2-VCL led to PIP2 release from VCL, enabling PI3K activation via TLR2. These results highlight the complexity of TLR signaling, and the importance of discovering protein-protein interactions that contribute to the outcome of infection.


Subject(s)
Porphyromonas gingivalis , Toll-Like Receptor 2 , Porphyromonas gingivalis/genetics , Toll-Like Receptor 2/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Immune Evasion , Vinculin/metabolism , Base Composition , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA
7.
Liver Int ; 43(2): 393-400, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35840342

ABSTRACT

BACKGROUND & AIMS: To explore the humoral and T-cell response to the third COVID-19 vaccination in autoimmune hepatitis (AIH). METHODS: Anti-SARS-CoV-2 antibody titers were prospectively determined in 81 AIH patients and 53 healthy age- and sex-matched controls >7 days (median 35) after the first COVID-19 booster vaccination. The spike-specific T-cell response was assessed using an activation-induced marker assay (AIM) in a subset of patients. RESULTS: Median antibody levels were significantly lower in AIH compared to controls (10 908 vs. 25 000 AU/ml, p < .001), especially in AIH patients treated with MMF (N = 14, 4542 AU/ml, p = .004) or steroids (N = 27, 7326 AU/ml, p = .020). Also, 48% of AIH patients had antibody titers below the 10% percentile of the healthy controls (9194 AU/ml, p < .001). AIH patients had a high risk of failing to develop a spike-specific T-cell response (15/34 (44%) vs. 2/16 (12%), p = .05) and showed overall lower frequencies of spike-specific CD4 + T cells (median: 0.074% vs 0.283; p = .01) after the booster vaccination compared to healthy individuals. In 34/81 patients, antibody titers before and after booster vaccination were available. In this subgroup, all patients but especially those without detectable/low antibodies titers (<100 AU/ml) after the second vaccination (N = 11/34) showed a strong, 148-fold increase. CONCLUSION: A third COVID-19 vaccination efficiently boosts antibody levels and T-cell responses in AIH patients and even seroconversion in patients with the absent immune response after two vaccinations, but to a lower level compared to controls. Therefore, we suggest routinely assessing antibody levels in AIH patients and offering additional booster vaccinations to those with suboptimal responses.


Subject(s)
COVID-19 , Complementary Therapies , Hepatitis, Autoimmune , Humans , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies, Viral , Vaccination
8.
Antioxid Redox Signal ; 38(4-6): 388-402, 2023 02.
Article in English | MEDLINE | ID: mdl-35979894

ABSTRACT

Aims: Oxidative modifications of cysteine (Cys) thiols regulate various physiological processes, including inflammatory responses. The thioredoxin (Trx) system plays a key role in thiol redox control. The aim of this study was to characterize the dynamic cysteine proteome of human macrophages upon activation by the prototypical proinflammatory agent, bacterial lipopolysaccharide (LPS), and/or perturbation of the Trx system. Results: In this study, we profiled the cellular and redox proteome of human THP-1-derived macrophages during the early phase of LPS activation and/or inhibition of Trx system activity by auranofin (AF) by employing a peptide-centric, resin-assisted capture, redox proteomic workflow. Among 4200 identified cysteines, oxidation of nearly 10% was selectively affected by LPS or AF treatments. Notably, the proteomic analysis uncovered a subset of ∼100 thiols, mapped to proteins involved in diverse processes, whose oxidation is antagonistically regulated by LPS and Trx. Compared with the redox proteome, the cellular proteome was largely unchanged, highlighting the importance of redox modification as a mechanism that allows for rapid modulation of macrophage activities in response to a proinflammatory or pro-oxidant insult. Structural-functional analyses provided mechanistic insights into redox regulation of selected proteins, including the glutathione-synthesizing enzyme, glutamate-cysteine ligase, and the autophagy adaptor, SQSTM1/p62, suggesting mechanisms by which macrophages adapt and fine-tune their responses according to a changing inflammatory and redox environment. Innovation: This study provides a rich resource for further characterization of redox mechanisms that regulate macrophage inflammatory activities. Conclusion: The dynamic thiol redox proteome allows macrophages to efficiently respond and adapt to redox and inflammatory challenges. Antioxid. Redox Signal. 38, 388-402.


Subject(s)
Cysteine , Sulfhydryl Compounds , Humans , Sulfhydryl Compounds/metabolism , Cysteine/metabolism , Proteome/metabolism , Proteomics , Lipopolysaccharides/pharmacology , Thioredoxins/metabolism , Oxidation-Reduction , Macrophages/metabolism
9.
Front Immunol ; 14: 1326078, 2023.
Article in English | MEDLINE | ID: mdl-38268921

ABSTRACT

Introduction: Immune checkpoint inhibitors (ICI) have revolutionized the treatment of many malignancies in recent years. However, immune-related adverse events (irAE) are a frequent concern in clinical practice. The safety profile of ICI for the treatment of malignancies in patients diagnosed with autoimmune and cholestatic liver disease (AILD) remains unclear. Due to this uncertainty, these patients were excluded from ICI clinical trials and ICI are withheld from this patient group. In this retrospective multicenter study, we assessed the safety of ICI in patients with AILD. Methods: We contacted tertiary referral hospitals for the identification of AILD patients under ICI treatment in Europe via the European Reference Network on Hepatological Diseases (ERN RARE-LIVER). Fourteen centers contributed data on AILD patients with malignancies being treated with ICI, another three centers did not treat these patients with ICI due to fear of irAEs. Results: In this study, 22 AILD patients under ICI treatment could be identified. Among these patients, 12 had primary biliary cholangitis (PBC), five had primary sclerosing cholangitis (PSC), four had autoimmune hepatitis (AIH), and one patient had an AIH-PSC variant syndrome. Eleven patients had hepatobiliary cancers and the other 11 patients presented with non-hepatic tumors. The applied ICIs were atezolizumab (n=7), durvalumab (n=5), pembrolizumab (n=4), nivolumab (n=4), spartalizumab (n=1), and in one case combined immunotherapy with nivolumab plus ipilimumab. Among eight patients who presented with grade 1 or 2 irAEs, three demonstrated liver irAEs. Cases with grades ≥ 3 irAEs were not reported. No significant changes in liver tests were observed during the first year after the start of ICI. Discussion: This European multicenter study demonstrates that PD-1/PD-L1 inhibitors appear to be safe in patients with AILD. Further studies on the safety of more potent dual immune checkpoint therapy are needed. We conclude that immunotherapy should not categorically be withheld from patients with AILD.


Subject(s)
Cholestasis , Hepatitis, Autoimmune , Neoplasms , Humans , Programmed Cell Death 1 Receptor , Nivolumab/adverse effects , B7-H1 Antigen , Hepatitis, Autoimmune/drug therapy , Immune Checkpoint Inhibitors/adverse effects
10.
Acta Crystallogr D Struct Biol ; 78(Pt 9): 1156-1170, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36048155

ABSTRACT

A remarkable number of SARS-CoV-2 variants and other as yet unmonitored lineages harbor amino-acid substitutions with the potential to modulate the interface between the spike receptor-binding domain (RBD) and its receptor ACE2. The naturally occurring Q498Y substitution, which is present in currently circulating SARS-CoV-2 variants, has drawn the attention of several investigations. While computational predictions and in vitro binding studies suggest that Q498Y increases the binding affinity of the spike protein for ACE2, experimental in vivo models of infection have shown that a triple mutant carrying the Q498Y replacement is fatal in mice. To accurately characterize the binding kinetics of the RBD Q498Y-ACE2 interaction, biolayer interferometry analyses were performed. A significant enhancement of the RBD-ACE2 binding affinity relative to a reference SARS-CoV-2 variant of concern carrying three simultaneous replacements was observed. In addition, the RBD Q498Y mutant bound to ACE2 was crystallized. Compared with the structure of its wild-type counterpart, the RBD Q498Y-ACE2 complex reveals the conservation of major hydrogen-bond interactions and a more populated, nonpolar set of contacts mediated by the bulky side chain of Tyr498 that collectively lead to this increase in binding affinity. In summary, these studies contribute to a deeper understanding of the impact of a relevant mutation present in currently circulating SARS-CoV-2 variants which might lead to stronger host-pathogen interactions.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Binding Sites , Humans , Mice , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding/genetics , Spike Glycoprotein, Coronavirus/chemistry
11.
Semin Cell Dev Biol ; 132: 16-26, 2022 12.
Article in English | MEDLINE | ID: mdl-35764457

ABSTRACT

Ubiquitin-like proteins (Ubls) share some features with ubiquitin (Ub) such as their globular 3D structure and the ability to attach covalently to other proteins. Interferon Stimulated Gene 15 (ISG15) is an abundant Ubl that similar to Ub, marks many hundreds of cellular proteins, altering their fate. In contrast to Ub, , ISG15 requires interferon (IFN) induction to conjugate efficiently to other proteins. Moreover, despite the multitude of E3 ligases for Ub-modified targets, a single E3 ligase termed HERC5 (in humans) is responsible for the bulk of ISG15 conjugation. Targets include both viral and cellular proteins spanning an array of cellular compartments and metabolic pathways. So far, no common structural or biochemical feature has been attributed to these diverse substrates, raising questions about how and why they are selected. Conjugation of ISG15 mitigates some viral and bacterial infections and is linked to a lower viral load pointing to the role of ISG15 in the cellular immune response. In an apparent attempt to evade the immune response, some viruses try to interfere with the ISG15 pathway. For example, deconjugation of ISG15 appears to be an approach taken by coronaviruses to interfere with ISG15 conjugates. Specifically, coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV-2, encode papain-like proteases (PL1pro) that bear striking structural and catalytic similarities to the catalytic core domain of eukaryotic deubiquitinating enzymes of the Ubiquitin-Specific Protease (USP) sub-family. The cleavage specificity of these PLpro enzymes is for flexible polypeptides containing a consensus sequence (R/K)LXGG, enabling them to function on two seemingly unrelated categories of substrates: (i) the viral polyprotein 1 (PP1a, PP1ab) and (ii) Ub- or ISG15-conjugates. As a result, PLpro enzymes process the viral polyprotein 1 into an array of functional proteins for viral replication (termed non-structural proteins; NSPs), and it can remove Ub or ISG15 units from conjugates. However, by de-conjugating ISG15, the virus also creates free ISG15, which in turn may affect the immune response in two opposite pathways: free ISG15 negatively regulates IFN signaling in humans by binding non-catalytically to USP18, yet at the same time free ISG15 can be secreted from the cell and induce the IFN pathway of the neighboring cells. A deeper understanding of this protein-modification pathway and the mechanisms of the enzymes that counteract it will bring about effective clinical strategies related to viral and bacterial infections.


Subject(s)
COVID-19 , Interferons , Humans , Peptide Hydrolases/metabolism , SARS-CoV-2 , Ubiquitin/metabolism , Antiviral Agents , Polyproteins , Immunity , Cytokines/metabolism , Ubiquitins/genetics , Ubiquitin Thiolesterase
12.
Hum Genet ; 141(3-4): 431-444, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35278131

ABSTRACT

Sequencing exomes/genomes have been successful for identifying recessive genes; however, discovery of dominant genes including deafness genes (DFNA) remains challenging. We report a new DFNA gene, ATP11A, in a Newfoundland family with a variable form of bilateral sensorineural hearing loss (SNHL). Genome-wide SNP genotyping linked SNHL to DFNA33 (LOD = 4.77), a locus on 13q34 previously mapped in a German family with variable SNHL. Whole-genome sequencing identified 51 unremarkable positional variants on 13q34. Continuous clinical ascertainment identified several key recombination events and reduced the disease interval to 769 kb, excluding all but one variant. ATP11A (NC_000013.11: chr13:113534963G>A) is a novel variant predicted to be a cryptic donor splice site. RNA studies verified in silico predictions, revealing the retention of 153 bp of intron in the 3' UTR of several ATP11A isoforms. Two unresolved families from Israel were subsequently identified with a similar, variable form of SNHL and a novel duplication (NM_032189.3:c.3322_3327+2dupGTCCAGGT) in exon 28 of ATP11A extended exon 28 by 8 bp, leading to a frameshift and premature stop codon (p.Asn1110Valfs43Ter). ATP11A is a type of P4-ATPase that transports (flip) phospholipids from the outer to inner leaflet of cell membranes to maintain asymmetry. Haploinsufficiency of ATP11A, the phospholipid flippase that specially transports phosphatidylserine (PS) and phosphatidylethanolamine (PE), could leave cells with PS/PE at the extracellular side vulnerable to phagocytic degradation. Given that surface PS can be pharmaceutically targeted, hearing loss due to ATP11A could potentially be treated. It is also likely that ATP11A is the gene underlying DFNA33.


Subject(s)
ATP-Binding Cassette Transporters , Deafness , Hearing Loss, Sensorineural , Hearing Loss , Humans , 3' Untranslated Regions , ATP-Binding Cassette Transporters/genetics , Deafness/genetics , Hearing Loss/genetics , Hearing Loss, Sensorineural/genetics , Mutation , Pedigree , Phospholipids/metabolism , RNA Splice Sites
13.
United European Gastroenterol J ; 10(3): 319-329, 2022 04.
Article in English | MEDLINE | ID: mdl-35289983

ABSTRACT

BACKGROUND/AIMS: In this observational study, we explored the humoral and cellular immune response to SARS-CoV-2 vaccination in patients with autoimmune hepatitis (AIH) and patients with cholestatic autoimmune liver disease (primary sclerosing cholangitis [PSC] and primary biliary cholangitis [PBC]). METHODS: Anti-SARS-CoV-2 antibody titers were determined using the DiaSorin LIAISON and Roche immunoassays in 103 AIH, 64 PSC, and 61 PBC patients and 95 healthy controls >14 days after the second COVID-19 vaccination. The spike-specific T-cell response was assessed using an activation-induced marker assay (AIM) in a subset of individuals. RESULTS: Previous SARS-CoV-2 infection was frequently detected in AIH but not in PBC/PSC (10/112 (9%), versus 4/144 (2.7%), p = 0.03). In the remaining patients, seroconversion was measurable in 97% of AIH and 99% of PBC/PSC patients, respectively. However, in 13/94 AIH patients antibody levels were lower than in any healthy control, which contributed to lower antibody levels of the total AIH cohort when compared to PBC/PSC or controls (641 vs. 1020 vs. 1200 BAU/ml, respectively). Notably, antibody levels were comparably low in AIH patients with (n = 85) and without immunosuppression (n = 9). Also, antibody titers significantly declined within 7 months after the second vaccination. In the AIM assay of 20 AIH patients, a spike-specific T-cell response was undetectable in 45% despite a positive serology, while 87% (13/15) of the PBC/PSC demonstrated a spike-specific T-cell response. CONCLUSION: Patients with AIH show an increased SARS-CoV-2 infection rate as well as an impaired B- and T-cell response to SARS-CoV-2 vaccine compared to PBC and PSC patients, even in the absence of immunosuppression. Thus, antibody responses to vaccination in AIH patients need to be monitored and early booster immunizations considered in low responders.


Subject(s)
COVID-19 , Cholangitis, Sclerosing , Cholestasis , Hepatitis, Autoimmune , Liver Cirrhosis, Biliary , COVID-19/prevention & control , COVID-19 Vaccines , Cholangitis, Sclerosing/complications , Hepatitis, Autoimmune/complications , Humans , SARS-CoV-2 , Vaccination
14.
Am J Hum Genet ; 109(3): 518-532, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35108495

ABSTRACT

Cell adhesion molecules are membrane-bound proteins predominantly expressed in the central nervous system along principal axonal pathways with key roles in nervous system development, neural cell differentiation and migration, axonal growth and guidance, myelination, and synapse formation. Here, we describe ten affected individuals with bi-allelic variants in the neuronal cell adhesion molecule NRCAM that lead to a neurodevelopmental syndrome of varying severity; the individuals are from eight families. This syndrome is characterized by developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity. Computational analyses of NRCAM variants, many of which cluster in the third fibronectin type III (Fn-III) domain, strongly suggest a deleterious effect on NRCAM structure and function, including possible disruption of its interactions with other proteins. These findings are corroborated by previous in vitro studies of murine Nrcam-deficient cells, revealing abnormal neurite outgrowth, synaptogenesis, and formation of nodes of Ranvier on myelinated axons. Our studies on zebrafish nrcamaΔ mutants lacking the third Fn-III domain revealed that mutant larvae displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03). Moreover, nrcamaΔ mutants displayed a trend toward increased amounts of α-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections. Taken together, our study provides evidence that NRCAM disruption causes a variable form of a neurodevelopmental disorder and broadens the knowledge on the growing role of the cell adhesion molecule family in the nervous system.


Subject(s)
Neurodevelopmental Disorders , Peripheral Nervous System Diseases , Animals , Axons/metabolism , Cell Adhesion/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules, Neuronal , Humans , Mice , Muscle Hypotonia/genetics , Muscle Hypotonia/metabolism , Muscle Spasticity/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Zebrafish/genetics , Zebrafish/metabolism
15.
Front Immunol ; 12: 608604, 2021.
Article in English | MEDLINE | ID: mdl-34248927

ABSTRACT

Background and Objectives: Atypical hemolytic uremic syndrome (aHUS) is mostly attributed to dysregulation of the alternative complement pathway (ACP) secondary to disease-causing variants in complement components or regulatory proteins. Hereditary aHUS due to C3 disruption is rare, usually caused by heterozygous activating mutations in the C3 gene, and transmitted as autosomal dominant traits. We studied the molecular basis of early-onset aHUS, associated with an unusual finding of a novel homozygous activating deletion in C3. Design Setting Participants & Measurements: A male neonate with eculizumab-responsive fulminant aHUS and C3 hypocomplementemia, and six of his healthy close relatives were investigated. Genetic analysis on genomic DNA was performed by exome sequencing of the patient, followed by targeted Sanger sequencing for variant detection in his close relatives. Complement components analysis using specific immunoassays was performed on frozen plasma samples from the patient and mother. Results: Exome sequencing revealed a novel homozygous variant in exon 26 of C3 (c.3322_3333del, p.Ile1108_Lys1111del), within the highly conserved thioester-containing domain (TED), fully segregating with the familial disease phenotype, as compatible with autosomal recessive inheritance. Complement profiling of the patient showed decreased C3 and FB levels, with elevated levels of the terminal membrane attack complex, while his healthy heterozygous mother showed intermediate levels of C3 consumption. Conclusions: Our findings represent the first description of aHUS secondary to a novel homozygous deletion in C3 with ensuing unbalanced C3 over-activation, highlighting a critical role for the disrupted C3-TED domain in the disease mechanism.


Subject(s)
Atypical Hemolytic Uremic Syndrome/diagnosis , Atypical Hemolytic Uremic Syndrome/genetics , Base Sequence/genetics , Complement C3/genetics , Sequence Deletion , Atypical Hemolytic Uremic Syndrome/congenital , Atypical Hemolytic Uremic Syndrome/etiology , Child, Preschool , Complement Activation , Complement Membrane Attack Complex , Genes, Recessive , Homozygote , Humans , Male , Exome Sequencing
16.
ACS Infect Dis ; 7(3): 608-623, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33448785

ABSTRACT

A library of ciprofloxacin-nuclease conjugates was designed and synthesized to investigate their potential as catalytic antibiotics. The Cu(II) complexes of the new designer compounds (i) showed excellent in vitro hydrolytic and oxidative DNase activity, (ii) showed good antibacterial activity against both Gram-negative and Gram-positive bacteria, and (iii) proved to be highly potent bacterial DNA gyrase inhibitors via a mechanism that involves stabilization of the fluoroquinolone-topoisomerase-DNA ternary complex. Furthermore, the Cu(II) complexes of two of the new designer compounds were shown to fragment supercoiled plasmid DNA into linear DNA in the presence of DNA gyrase, demonstrating a "proof of concept" in vitro. These ciprofloxacin-nuclease conjugates can therefore serve as models with which to develop next-generation, in vivo functioning catalytic antimicrobials.


Subject(s)
Anti-Bacterial Agents , Fluoroquinolones , Anti-Bacterial Agents/pharmacology , DNA , DNA Gyrase , Fluoroquinolones/pharmacology , Topoisomerase II Inhibitors/pharmacology
17.
Biochim Biophys Acta Bioenerg ; 1861(8): 148214, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32360310

ABSTRACT

The structural features enabling carotenoid translocation between molecular entities in nature is poorly understood. Here, we present the three-dimensional X-ray structure of an expanded oligomeric state of the C-terminal domain homolog (CTDH) of the orange carotenoid protein, a key water-soluble protein in cyanobacterial photosynthetic photo-protection, at 2.9 Å resolution. This protein binds a canthaxanthin carotenoid ligand and undergoes structural reorganization at the dimeric level, which facilitates cargo uptake and delivery. The structure displays heterogeneity revealing the dynamic nature of its C-terminal tail (CTT). Molecular dynamics (MD) simulations based on the CTDH structures identified specific residues that govern the dimeric transition mechanism. Mutagenesis based on the crystal structure and these MD simulations then confirmed that these specific residues within the CTT are critical for carotenoid uptake, encapsulation and delivery processes. We present a mechanism that can be applied to other systems that require cargo uptake.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carotenoids/metabolism , Apoproteins/chemistry , Apoproteins/metabolism , Biological Transport , Cyanobacteria/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Domains , Protein Multimerization , Protein Structure, Quaternary
18.
Nat Commun ; 11(1): 2029, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32332717

ABSTRACT

Beta-lactamase inhibitors are increasingly used to counteract antibiotic resistance mediated by beta-lactamase enzymes. These inhibitors compete with the beta-lactam antibiotic for the same binding site on the beta-lactamase, thus generating an evolutionary tradeoff: mutations that increase the enzyme's beta-lactamase activity tend to increase also its susceptibility to the inhibitor. Here, we investigate how common and accessible are mutants that escape this adaptive tradeoff. Screening a deep mutant library of the blaampC beta-lactamase gene of Escherichia coli, we identified mutations that allow growth at beta-lactam concentrations far exceeding those inhibiting growth of the wildtype strain, even in the presence of the enzyme inhibitor (avibactam). These escape mutations are rare and drug-specific, and some combinations of avibactam with beta-lactam drugs appear to prevent such escape phenotypes. Our results, showing differential adaptive potential of blaampC to combinations of avibactam and different beta-lactam antibiotics, suggest that it may be possible to identify treatments that are more resilient to evolution of resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/genetics , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/genetics , Amino Acid Substitution , Anti-Bacterial Agents/chemistry , Azabicyclo Compounds/pharmacology , Bacterial Proteins/chemistry , Binding Sites/genetics , Escherichia coli/drug effects , Evolution, Molecular , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Molecular Docking Simulation , Mutation , beta-Lactamases/chemistry , beta-Lactams/pharmacology
19.
Cell Death Discov ; 5: 144, 2019.
Article in English | MEDLINE | ID: mdl-31728210

ABSTRACT

Zinc is vital for the structure and function of ~3000 human proteins and hence plays key physiological roles. Consequently, impaired zinc homeostasis is associated with various human diseases including cancer. Intracellular zinc levels are tightly regulated by two families of zinc transporters: ZIPs and ZnTs; ZIPs import zinc into the cytosol from the extracellular milieu, or from the lumen of organelles into the cytoplasm. In contrast, the vast majority of ZnTs compartmentalize zinc within organelles, whereas the ubiquitously expressed ZnT1 is the sole zinc exporter. Herein, we explored the hypothesis that qualitative and quantitative alterations in ZnT1 activity impair cellular zinc homeostasis in cancer. Towards this end, we first used bioinformatics to analyze inactivating mutations in ZIPs and ZNTs, catalogued in the COSMIC and gnomAD databases, representing tumor specimens and healthy population controls, respectively. ZnT1, ZnT10, ZIP8, and ZIP10 showed extremely high rates of loss of function mutations in cancer as compared to healthy controls. Analysis of the putative functional impact of missense mutations in ZnT1-ZnT10 and ZIP1-ZIP14, using homologous protein alignment and structural predictions, revealed that ZnT1 displays a markedly increased frequency of predicted functionally deleterious mutations in malignant tumors, as compared to a healthy population. Furthermore, examination of ZnT1 expression in 30 cancer types in the TCGA database revealed five tumor types with significant ZnT1 overexpression, which predicted dismal prognosis for cancer patient survival. Novel functional zinc transport assays, which allowed for the indirect measurement of cytosolic zinc levels, established that wild type ZnT1 overexpression results in low intracellular zinc levels. In contrast, overexpression of predicted deleterious ZnT1 missense mutations did not reduce intracellular zinc levels, validating eight missense mutations as loss of function (LoF) mutations. Thus, alterations in ZnT1 expression and LoF mutations in ZnT1 provide a molecular mechanism for impaired zinc homeostasis in cancer formation and/or progression.

20.
J Hepatol ; 71(4): 783-792, 2019 10.
Article in English | MEDLINE | ID: mdl-31207266

ABSTRACT

BACKGROUND & AIMS: T cells are central mediators of liver inflammation and represent potential treatment targets in cholestatic liver disease. Whereas emerging evidence shows that bile acids (BAs) affect T cell function, the role of T cells for the regulation of BA metabolism is unknown. In order to understand this interplay, we investigated the influence of T cells on BA metabolism in a novel mouse model of cholangitis. METHODS: Mdr2-/- mice were crossed with transgenic K14-OVAp mice, which express an MHC class I restricted ovalbumin peptide on biliary epithelial cells (Mdr2-/-xK14-OVAp). T cell-mediated cholangitis was induced by the adoptive transfer of antigen-specific CD8+ T cells. BA levels were quantified using a targeted liquid chromatography-mass spectrometry-based approach. RESULTS: T cell-induced cholangitis resulted in reduced levels of unconjugated BAs in the liver and significantly increased serum and hepatic levels of conjugated BAs. Genes responsible for BA synthesis and uptake were downregulated and expression of the bile salt export pump was increased. The transferred antigen-specific CD8+ T cells alone were able to induce these changes, as demonstrated using Mdr2-/-xK14-OVAp recipient mice on the Rag1-/- background. Mechanistically, we showed by depletion experiments that alterations in BA metabolism were partly mediated by the proinflammatory cytokines TNF and IFN-γ in an FXR-dependent manner, a process that in vitro required cell contact between T cells and hepatocytes. CONCLUSION: Whereas it is known that BA metabolism is dysregulated in sepsis and related conditions, we have shown that T cells are able to control the synthesis and metabolism of BAs, a process which depends on TNF and IFN-γ. Understanding the effect of lymphocytes on BA metabolism will help in the design of combined treatment strategies for cholestatic liver diseases. LAY SUMMARY: Dysregulation of bile acid metabolism and T cells can contribute to the development of cholangiopathies. Before targeting T cells for the treatment of cholangiopathies, it should be determined whether they exert protective effects on bile acid metabolism. Herein, we demonstrate that T cell-induced cholangitis resulted in decreased levels of harmful unconjugated bile acids. T cells were able to directly control synthesis and metabolism of bile acids, a process which was dependent on the proinflammatory cytokines TNF and IFN-γ. Understanding the effect of lymphocytes on bile acid metabolism will help in the design of combined treatment strategies for cholestatic liver diseases.


Subject(s)
Bile Acids and Salts , Cholangitis , Interferon-gamma/immunology , T-Lymphocytes , Tumor Necrosis Factor-alpha/immunology , ATP Binding Cassette Transporter, Subfamily B/genetics , Animals , Bile Acids and Salts/biosynthesis , Bile Acids and Salts/metabolism , Biosynthetic Pathways/immunology , Cholangitis/immunology , Cholangitis/metabolism , Cholangitis/pathology , Mice , Mice, Knockout , Mice, Transgenic , Models, Animal , Serpins/genetics , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , ATP-Binding Cassette Sub-Family B Member 4
SELECTION OF CITATIONS
SEARCH DETAIL
...