Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cancer ; 150(4): 617-625, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34591983

ABSTRACT

A distinct group of colorectal carcinomas (CRCs) referred to as the "CpG island methylator phenotype" (CIMP) shows an extremely high incidence of de novo DNA methylation and may share common pathological, clinical or molecular features. However, there is limited consensus about which CpG islands (CGIs) define a CIMP, particularly in microsatellite stable (MSS) carcinomas. To study this phenotype in a systematic manner, we analyzed genome-wide CGI DNA methylation profiles of 19 MSS CRC using methyl-CpG immunoprecipitation (MCIp) and hybridization on 244K CGI oligonucleotide microarrays, determined KRAS and BRAF mutation status and compared disease-related DNA methylation changes to chromosomal instability as detected by microarray-based comparative genomic hybridization. Results were validated using mass spectrometry analysis of bisulfite-converted DNA at a subset of 76 individual CGIs in 120 CRC and 43 matched normal tissue samples. Both genome-wide profiling and CpG methylation fine mapping segregated a group of CRC showing pronounced and frequent de novo DNA methylation of a distinct group of CGIs that only partially overlapped with previously established classifiers. The CIMP group defined in our study revealed significant association with colon localization, either KRAS or BRAF mutation, and mostly minor chromosomal losses but no association with known histopathological features. Our data provide a basis for defining novel marker panels that may enable a more reliable classification of CIMP in all CRCs, independently of the MS status.


Subject(s)
Colorectal Neoplasms/genetics , CpG Islands , DNA Methylation , Microsatellite Instability , Adult , Age Factors , Aged , Aged, 80 and over , Biomarkers, Tumor , DNA Copy Number Variations , Female , Humans , Male , Middle Aged , Phenotype
2.
Nat Commun ; 12(1): 1556, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33692344

ABSTRACT

The differentiation of human blood monocytes (MO), the post-mitotic precursors of macrophages (MAC) and dendritic cells (moDC), is accompanied by the active turnover of DNA methylation, but the extent, consequences and mechanisms of DNA methylation changes remain unclear. Here, we profile and compare epigenetic landscapes during IL-4/GM-CSF-driven MO differentiation across the genome and detect several thousand regions that are actively demethylated during culture, both with or without accompanying changes in chromatin accessibility or transcription factor (TF) binding. We further identify TF that are globally associated with DNA demethylation processes. While interferon regulatory factor 4 (IRF4) is found to control hallmark dendritic cell functions with less impact on DNA methylation, early growth response 2 (EGR2) proves essential for MO differentiation as well as DNA methylation turnover at its binding sites. We also show that ERG2 interacts with the 5mC hydroxylase TET2, and its consensus binding sequences show a characteristic DNA methylation footprint at demethylated sites with or without detectable protein binding. Our findings reveal an essential role for EGR2 as epigenetic pioneer in human MO and suggest that active DNA demethylation can be initiated by the TET2-recruiting TF both at stable and transient binding sites.


Subject(s)
Early Growth Response Protein 2/metabolism , Monocytes/metabolism , Binding Sites , Cells, Cultured , Chromatin Immunoprecipitation Sequencing , DNA Demethylation , DNA Methylation/genetics , DNA Methylation/physiology , Early Growth Response Protein 2/chemistry , Early Growth Response Protein 2/genetics , Humans , Immunoblotting , Immunoprecipitation , Mass Spectrometry , Protein Binding , RNA-Seq
3.
Genet Med ; 23(2): 374-383, 2021 02.
Article in English | MEDLINE | ID: mdl-33077894

ABSTRACT

PURPOSE: JARID2, located on chromosome 6p22.3, is a regulator of histone methyltransferase complexes that is expressed in human neurons. So far, 13 individuals sharing clinical features including intellectual disability (ID) were reported with de novo heterozygous deletions in 6p22-p24 encompassing the full length JARID2 gene (OMIM 601594). However, all published individuals to date have a deletion of at least one other adjoining gene, making it difficult to determine if JARID2 is the critical gene responsible for the shared features. We aim to confirm JARID2 as a human disease gene and further elucidate the associated clinical phenotype. METHODS: Chromosome microarray analysis, exome sequencing, and an online matching platform (GeneMatcher) were used to identify individuals with single-nucleotide variants or deletions involving JARID2. RESULTS: We report 16 individuals in 15 families with a deletion or single-nucleotide variant in JARID2. Several of these variants are likely to result in haploinsufficiency due to nonsense-mediated messenger RNA (mRNA) decay. All individuals have developmental delay and/or ID and share some overlapping clinical characteristics such as facial features with those who have larger deletions involving JARID2. CONCLUSION: We report that JARID2 haploinsufficiency leads to a clinically distinct neurodevelopmental syndrome, thus establishing gene-disease validity for the purpose of diagnostic reporting.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Haploinsufficiency/genetics , Heterozygote , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Phenotype , Polycomb Repressive Complex 2/genetics , Syndrome , Exome Sequencing
5.
Nat Commun ; 11(1): 402, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31964861

ABSTRACT

Establishing gene regulatory networks during differentiation or reprogramming requires master or pioneer transcription factors (TFs) such as PU.1, a prototype master TF of hematopoietic lineage differentiation. To systematically determine molecular features that control its activity, here we analyze DNA-binding in vitro and genome-wide in vivo across different cell types with native or ectopic PU.1 expression. Although PU.1, in contrast to classical pioneer factors, is unable to access nucleosomal target sites in vitro, ectopic induction of PU.1 leads to the extensive remodeling of chromatin and redistribution of partner TFs. De novo chromatin access, stable binding, and redistribution of partner TFs both require PU.1's N-terminal acidic activation domain and its ability to recruit SWI/SNF remodeling complexes, suggesting that the latter may collect and distribute co-associated TFs in conjunction with the non-classical pioneer TF PU.1.


Subject(s)
Chromatin Assembly and Disassembly/physiology , Gene Regulatory Networks , Hematopoiesis/genetics , Nucleosomes/metabolism , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Binding Sites/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/metabolism , DNA/metabolism , Healthy Volunteers , Hematopoietic Stem Cells/physiology , Humans , Leukapheresis , Protein Domains , RNA-Seq
6.
Leukemia ; 33(1): 26-36, 2019 01.
Article in English | MEDLINE | ID: mdl-29925905

ABSTRACT

Malignant transformation is frequently associated with disease-specific epigenetic alterations, but the underlying mechanisms and pathophysiological consequences remain poorly understood. Here, we used global comparative DNA methylation profiling at CG-rich regions of 27 acute myeloid leukemia (AML) samples to select a subset of aberrantly methylated CG-rich regions (~400 regions, ~15,000 CpGs) for quantitative DNA methylation profiling in a large cohort of AML patients (n = 196) using MALDI-TOF analysis of bisulfite-treated DNA. Meta-analysis separated a subgroup of CG-rich regions showing highly correlated DNA methylation changes that were marked by histone H3 lysine 27 trimethylation in normal hematopoietic progenitor cells. While the group of non-polycomb group (PcG) target regions displayed methylation patterns that correlated well with molecular and cytogenetic markers, PcG target regions displayed a much weaker association with genetic features. However, the degree of methylation gain across the latter panel showed significant correlation with active DNMT3A levels and with overall survival. Our study suggests that both epigenetic as well as genetic aberrations underlay AML-related changes in DNA methylation at CG-rich regions and that the former may provide a marker to improve classification and prognostication of adult AML patients.


Subject(s)
Biomarkers, Tumor/genetics , Cell Transformation, Neoplastic/pathology , CpG Islands , DNA Methylation , Epigenesis, Genetic , Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/genetics , Adult , Case-Control Studies , Cell Transformation, Neoplastic/genetics , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Prognosis , Promoter Regions, Genetic , Survival Rate , Young Adult
7.
Nature ; 507(7493): 455-461, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24670763

ABSTRACT

Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.


Subject(s)
Atlases as Topic , Enhancer Elements, Genetic/genetics , Gene Expression Regulation/genetics , Molecular Sequence Annotation , Organ Specificity , Cell Line , Cells, Cultured , Cluster Analysis , Genetic Predisposition to Disease/genetics , HeLa Cells , Humans , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Transcription Initiation Site , Transcription Initiation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...