Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Haematologica ; 2024 03 21.
Article in English | MEDLINE | ID: mdl-38511268

ABSTRACT

Multiple Myeloma (MM) is an incurable plasma cell malignancy, that despite an unprecedented increase in overall survival, lacks truly risk-adapted or targeted treatments. A proportion of patients with MM depend on BCL-2 for survival and recently the BCL-2 antagonist venetoclax has shown clinical efficacy and safety in t(11;14) and BCL-2 overexpressing MM. However, only a small proportion of MM patients rely on BCL-2 (~20%), there is a need to broaden the patient population outside of t(11;14) that can be treated with venetoclax. Therefore, we took an unbiased screening approach and screened epigenetic modifiers to enhance venetoclax sensitivity in two non-BCL-2 dependent MM cell lines. The demethylase inhibitor 5-azacytidine was one of the lead hits from the screen, and the enhanced cell killing of the combination was confirmed in additional MM cell lines. Using dynamic BH3 profiling and immunoprecipitations we identified the potential mechanism of synergy is due to increased NOXA expression, through the integrated stress response. Knockdown of PMAIP1 or PKR partially rescues cell death of the venetoclax and 5-azacytidine combination treatment. The addition of a steroid to the combination treatment did not enhance the cell death and interestingly we found enhanced death of the immune cells with steroid addition, suggesting that a steroid-sparing regimen may be more beneficial in MM. Lastly, we show for the first time in primary MM patient samples, that 5-azacytidine enhances the response to venetoclax ex-vivo, across diverse anti-apoptotic dependencies (BCL-2 or MCL-1) and diverse cytogenetic backgrounds. Overall, our data identifies 5-azacytidine and venetoclax as an effective treatment combination and this could be a tolerable steroid-sparing regimen, particularly for elderly MM patients.

2.
Int J Mol Sci ; 24(14)2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37511018

ABSTRACT

Extramedullary multiple myeloma (or extramedullary disease, EMD) is an aggressive form of multiple myeloma (MM) that occurs when malignant plasma cells become independent of the bone marrow microenvironment. This may occur alongside MM diagnosis or in later stages of relapse and confers an extremely poor prognosis. In the era of novel agents and anti-myeloma therapies, the incidence of EMD is increasing, making this a more prevalent and challenging cohort of patients. Therefore, understanding the underlying mechanisms of bone marrow escape and EMD driver events is increasingly urgent. The role of genomics in MM has been studied extensively; however, much less is known about the genetic background of EMD. Recently there has been an increased focus on driver events for the establishment of distant EMD sites. Generally, high-risk cytogenetic abnormalities and gene signatures are associated with EMD, alongside mutations in RAS signalling pathways. More recently, changes in epigenetic regulation have also been documented, specifically the hypermethylation of DNA promoter regions. Therefore, the focus of this review is to summarize and discuss what is currently known about the genetic background of EMD in MM.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/pathology , Epigenesis, Genetic , Neoplasm Recurrence, Local/genetics , Plasma Cells/pathology , Bone Marrow/pathology , Tumor Microenvironment
4.
Cancers (Basel) ; 15(9)2023 May 06.
Article in English | MEDLINE | ID: mdl-37174099

ABSTRACT

Despite significant improvements in the treatment of multiple myeloma (MM), it remains mostly incurable, highlighting a need for new therapeutic approaches. Patients with high-risk disease characteristics have a particularly poor prognosis and limited response to current frontline therapies. The recent development of immunotherapeutic strategies, particularly T cell-based agents have changed the treatment landscape for patients with relapsed and refractory disease. Adoptive cellular therapies include chimeric antigen receptor (CAR) T cells, which have emerged as a highly promising therapy, particularly for patients with refractory disease. Other adoptive cellular approaches currently in trials include T cell receptor-based therapy (TCR), and the expansion of CAR technology to natural killer (NK) cells. In this review we explore the emerging therapeutic field of adoptive cellular therapy for MM, with a particular focus on the clinical impact of these therapies for patients with high-risk myeloma.

5.
Cancers (Basel) ; 15(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36980705

ABSTRACT

Multiple myeloma (MM) is the second most common haematological neoplasm of adults in the Western world. Overall survival has doubled since the advent of proteosome inhibitors (PIs), immunomodulatory agents (IMiDs), and monoclonal antibodies. However, patients with adverse cytogenetics or high-risk disease as determined by the Revised International Staging System (R-ISS) continue to have poorer outcomes, and triple-refractory patients have a median survival of less than 1 year. Bispecific antibodies (BsAbs) commonly bind to a tumour epitope along with CD3 on T-cells, leading to T-cell activation and tumour cell killing. These treatments show great promise in MM patients, with the first agent, teclistamab, receiving regulatory approval in 2022. Their potential utility is hampered by the immunosuppressive tumour microenvironment (TME), a hallmark of MM, which may limit efficacy, and by undesirable adverse events, including cytokine release syndrome (CRS) and infections, some of which may be fatal. In this review, we first consider the means of enhancing the efficacy of BsAbs in MM. These include combining BsAbs with other drugs that ameliorate the effect of the immunosuppressive TME, improving target availability, the use of BsAbs directed against multiple target antigens, and the optimal time in the treatment pathway to employ BsAbs. We then discuss methods to improve safety, focusing on reducing infection rates associated with treatment-induced hypogammaglobulinaemia, and decreasing the frequency and severity of CRS. BsAbs offer a highly-active therapeutic option in MM. Improving the efficacy and safety profiles of these agents may enable more patients to benefit from these novel therapies and improve outcomes for patients with high-risk disease.

6.
Res Pract Thromb Haemost ; 7(2): 100085, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36817284

ABSTRACT

Background: Severe COVID-19 is associated with marked endothelial cell (EC) activation that plays a key role in immunothrombosis and pulmonary microvascular occlusion. However, the biological mechanisms through which SARS-CoV-2 causes EC activation and damage remain poorly defined. Objectives: We investigated EC activation in patients with acute COVID-19, and specifically focused on how proteins stored within Weibel-Palade bodies may impact key aspects of disease pathogenesis. Methods: Thirty-nine patients with confirmed COVID-19 were recruited. Weibel-Palade body biomarkers (von Willebrand factor [VWF], angiopoietin-2 [Angpt-2], and osteoprotegerin) and soluble thrombomodulin (sTM) levels were determined. In addition, EC activation and angiogenesis were assessed in the presence or absence of COVID-19 plasma incubation. Results: Markedly elevated plasma VWF antigen, Angpt-2, osteoprotegerin, and sTM levels were observed in patients with acute COVID-19. The increased levels of both sTM and Weibel-Palade body components (VWF, osteoprotegerin, and Angpt-2) correlated with COVID-19 severity. Incubation of COVID-19 plasma with ECs triggered enhanced VWF secretion and increased Angpt-2 expression, as well as significantly enhanced in vitro EC tube formation and angiogenesis. Conclusion: We propose that acute SARS-CoV-2 infection leads to a complex and multifactorial EC activation, progressive loss of thrombomodulin, and increased Angpt-2 expression, which collectively serve to promote a local proangiogenic state.

9.
J Thromb Haemost ; 20(8): 1766-1777, 2022 08.
Article in English | MEDLINE | ID: mdl-35644028

ABSTRACT

Cancer associated thrombosis (CAT) is associated with significant morbidity and mortality, highlighting an unmet clinical need to improve understanding of the pathophysiology of CAT. Multiple myeloma (MM) is associated with one of the highest rates of thrombosis despite widespread use of thromboprophylactic agents. The pathophysiology of thrombosis in MM is multifactorial and patients with MM appear to display a hypercoagulable phenotype with potential contributory factors including raised von Willebrand factor (VWF) levels, activated protein C resistance, impaired fibrinolysis, and abnormal thrombin generation. In addition, the toxic effect of anti-myeloma therapies on the endothelium and contribution to thrombosis has been widely described. Elevated VWF/factor VIII (FVIII) plasma levels have been reported in heterogeneous cohorts of patients with MM and other hematological malignancies. In specific studies, high plasma VWF levels have been shown to associate with VTE risk and reduced overall survival. While the mechanisms underpinning this remain unclear, dysregulation of the VWF and A Disintegrin And Metalloprotease Thrombospondin type 1, motif 13 (ADAMTS-13) axis is evident in certain solid organ malignancies and correlates with advanced disease and thrombosis. Furthermore, thrombotic microangiopathic conditions arising from deficiencies in ADAMTS-13 and thus an accumulation of prothrombotic VWF multimers have been reported in patients with MM, particularly in association with specific myeloma therapies. This review will discuss current evidence on the pathophysiological mechanisms underpinning thrombosis in MM and in particular summarize the role of VWF/FVIII in hematological malignancies with a focus on thrombotic risk and emerging evidence for contribution to disease progression.


Subject(s)
Hematologic Neoplasms , Hemostatics , Multiple Myeloma , Thrombosis , ADAMTS13 Protein , Factor VIII/therapeutic use , Hematologic Neoplasms/complications , Hematologic Neoplasms/drug therapy , Humans , Multiple Myeloma/complications , Multiple Myeloma/drug therapy , von Willebrand Factor/metabolism
10.
Cancer Drug Resist ; 5(1): 214-228, 2022.
Article in English | MEDLINE | ID: mdl-35582539

ABSTRACT

Multiple Myeloma (MM) is a common haematological malignancy that is associated with a high rate of venous thromboembolism (VTE) with almost 10% of patients suffering thrombosis during their disease course. Recent studies have shown that, despite current thromboprophylaxis strategies, VTE rates in MM remain disappointingly high. The pathophysiology behind this consistently high rate of VTE is likely multifactorial. A number of factors such as anti-thrombin deficiency or raised coagulation Factor VIII levels may confer resistance to heparin in these patients, however, the optimal method of clinically evaluating this is unclear at present, though some groups have attempted its characterisation with thrombin generation testing (TGT). In addition to testing for heparin resistance, TGT in patients with MM has shown markedly varied abnormalities in both endogenous thrombin potential and serum thrombomodulin levels. Apart from these thrombin-mediated processes, other mechanisms potentially contributing to thromboprophylaxis failure include activated protein C resistance, endothelial toxicity secondary to chemotherapy agents, tissue factor abnormalities and the effect of immunoglobulins/"M-proteins" on both the endothelium and on fibrin fibre polymerisation. It thus appears clear that there are a multitude of factors contributing to the prothrombotic milieu seen in MM and further work is necessitated to elucidate which factors may directly affect and inhibit response to anticoagulation and which factors are contributing in a broader fashion to the hypercoagulability phenotype observed in these patients so that effective thromboprophylaxis strategies can be employed.

12.
Ir J Med Sci ; 191(4): 1799-1807, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34553330

ABSTRACT

Pathology is important in training to become a medical doctor but as curricula become more integrated, there is a risk that key aspects of pathology may be excluded. Following a survey of the current delivery of teaching in Ireland under the auspices of the Faculty of Pathology at the Royal College of Physicians of Ireland, suggested components of a core curriculum in pathology have been developed to be delivered at some stage during the medical course. These have been based on key principles and themes required by the Medical Council in Ireland. Professionalism is one of the core principles emphasised by the Medical Council. It includes the role of the pathologist in patient care and other professional values such as patient-centred care, clinical competencies and skills, e.g. explaining results, and knowledge under the various sub-disciplines, i.e. histopathology (including neuropathology), clinical microbiology, haematology, chemical pathology and immunology. In each of these, we suggest key aspects and activities that the medical graduate should be comfortable in carrying out. The methods of delivery of teaching and assessment across pathology disciplines have evolved and adapted to recent circumstances. Lessons have been learned and insights gained during the COVID-19 pandemic as educators have risen to the challenge of continuing to educate medical students. Integrated and multi-disciplinary teaching is recommended to reflect best the professional environment of the medical graduate who works as an integral part of a multi-disciplinary team, with the minimum dependence on the traditional lecture, where at all possible. Finally, options on assessment are discussed, e.g. multiple-choice questions, including their respective advantages and disadvantages.


Subject(s)
COVID-19 , Education, Medical, Undergraduate , Students, Medical , Curriculum , Education, Medical, Undergraduate/methods , Humans , Pandemics , Professionalism
15.
J Clin Med ; 10(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34441832

ABSTRACT

Multiple myeloma (MM) is associated with an increased risk of venous thrombosis (VTE). In the United Kingdom Medical Research Council (MRC) XI study of patients treated with immunomodulatory therapy, the VTE rate was 11.8% despite 87.7% of the patients being on thromboprophylaxis at the time of thrombosis. In order to effectively prevent VTE events in MM patients, a better understanding of patient and disease risk factors that might predict thrombosis is required. We performed a retrospective cohort analysis of over 300 newly diagnosed MM patients at a tertiary referral centre to determine the VTE rate, predictive factors for VTE, value of the Khorana score for MM VTE events and long-term mortality outcomes. Fifty-four percent of the patients were receiving thromboprophylaxis at the time of the VTE event. The mortality odds ratio was 3.3 (95% CI, 2.4-4.5) in patients who developed VTE in comparison to age-matched controls with MM. A younger age at diagnosis and higher white cell count (WCC) were found to be predictive of VTE events. Our data suggest that standard thromboprophylaxis may not be effective in preventing VTE events in myeloma patients, and alternative strategies, which could include higher-intensity thromboprophylaxis in young patients with a high WCC, are necessary.

16.
JMIR Form Res ; 5(8): e21817, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34292865

ABSTRACT

BACKGROUND: Early evidence of COVID-19-associated coagulopathy disseminated rapidly online during the first months of 2020, followed by clinical debate about how best to manage thrombotic risks in these patients. The rapid online spread of case reports was followed by online interim guidelines, discussions, and worldwide online searches for further information. The impact of global online search trends and online discussion on local approaches to coagulopathy in patients with COVID-19 has not been studied. OBJECTIVE: The goal of this study was to investigate the relationship between online search trends using Google Trends and the rate of appropriate venous thromboembolism (VTE) prophylaxis and anticoagulation therapy in a cohort of patients with COVID-19 admitted to a tertiary hospital in Ireland. METHODS: A retrospective audit of anticoagulation therapy and VTE prophylaxis among patients with COVID-19 who were admitted to a tertiary hospital was conducted between February 29 and May 31, 2020. Worldwide Google search trends of the term "COVID-19" and anticoagulation synonyms during this time period were determined and correlated against one another using a Spearman correlation. A P value of <.05 was considered significant, and analysis was completed using Prism, version 8 (GraphPad). RESULTS: A statistically significant Spearman correlation (P<.001, r=0.71) was found between the two data sets, showing an increase in VTE prophylaxis in patients with COVID-19 with increasing online searches worldwide. This represents a proxy for online searches and discussion, dissemination of information, and Google search trends relating to COVID-19 and clotting risk, in particular, which correlated with an increasing trend of providing thromboprophylaxis and anticoagulation therapy to patients with COVID-19 in our tertiary center. CONCLUSIONS: We described a correlation of local change in clinical practice with worldwide online dialogue and digital search trends that influenced individual clinicians, prior to the publication of formal guidelines or a local quality-improvement intervention.

17.
J Thromb Haemost ; 19(8): 1914-1921, 2021 08.
Article in English | MEDLINE | ID: mdl-34053187

ABSTRACT

BACKGROUND: Consistent with fulminant endothelial cell activation, elevated plasma von Willebrand factor (VWF) antigen levels have been reported in patients with COVID-19. The multimeric size and function of VWF are normally regulated through A Disintegrin And Metalloprotease with ThrombSpondin Motif type 1 motif, member 13 (ADAMTS-13)--mediated proteolysis. OBJECTIVES: This study investigated the hypothesis that ADAMTS-13 regulation of VWF multimer distribution may be impaired in severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection contributing to the observed microvascular thrombosis. PATIENTS AND METHODS: Patients with COVID-19 (n = 23) were recruited from the Beaumont Hospital Intensive Care Unit (ICU) in Dublin. Plasma VWF antigen, multimer distribution, ADAMTS-13 activity, and known inhibitors thereof were assessed. RESULTS: We observed markedly increased VWF collagen-binding activity in patients with severe COVID-19 compared to controls (median 509.1 versus 94.3 IU/dl). Conversely, plasma ADAMTS-13 activity was significantly reduced (median 68.2 IU/dl). In keeping with an increase in VWF:ADAMTS-13 ratio, abnormalities in VWF multimer distribution were common in patients with COVID-19, with reductions in high molecular weight VWF multimers. Terminal sialylation regulates VWF susceptibility to proteolysis by ADAMTS-13 and other proteases. We observed that both N- and O-linked sialylation were altered in severe COVID-19. Furthermore, plasma levels of the ADAMTS-13 inhibitors interleukin-6, thrombospondin-1, and platelet factor 4 were significantly elevated. CONCLUSIONS: These findings support the hypothesis that SARS-CoV-2 is associated with profound quantitative and qualitative increases in plasma VWF levels, and a multifactorial down-regulation in ADAMTS-13 function. Further studies will be required to determine whether therapeutic interventions to correct ADAMTS-13-VWF multimer dysfunction may be useful in COVID-microvascular thrombosis and angiopathy.


Subject(s)
COVID-19 , von Willebrand Factor , ADAMTS13 Protein , Humans , SARS-CoV-2 , Thrombospondin 1
19.
Cancer Drug Resist ; 4(4): 1008-1018, 2021.
Article in English | MEDLINE | ID: mdl-35582380

ABSTRACT

Multiple myeloma (MM) is an aggressive plasma cell malignancy with high degrees of variability in outcome, some patients experience long remissions, whilst others survive less than two years from diagnosis. Therapy refractoriness and relapse remain challenges in MM management, and there is a need for improved prognostication and targeted therapies to improve overall survival (OS). The past decade has seen a surge in gene expression profiling (GEP) studies which have elucidated the molecular landscape of MM and led to the identification of novel gene signatures that predict OS and outperform current clinical predictors. In this review, we discuss the limitations of current prognostic tools and the emerging role of GEP in diagnostics and in the development of personalised medicine approaches to combat drug resistance.

20.
Br J Haematol ; 192(4): 714-719, 2021 02.
Article in English | MEDLINE | ID: mdl-33326604

ABSTRACT

Endothelial cell (EC) activation plays a key role in the pathogenesis of pulmonary microvascular occlusion, which is a hallmark of severe coronavirus disease 2019 (COVID-19). Consistent with EC activation, increased plasma von Willebrand factor antigen (VWF:Ag) levels have been reported in COVID-19. Importantly however, studies in other microangiopathies have shown that plasma VWF propeptide (VWFpp) is a more sensitive and specific measure of acute EC activation. In the present study, we further investigated the nature of EC activation in severe COVID-19. Markedly increased plasma VWF:Ag [median (interquatile range, IQR) 608·8 (531-830)iu/dl] and pro-coagulant factor VIII (FVIII) levels [median (IQR) 261·9 (170-315) iu/dl] were seen in patients with severe severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Sequential testing showed that these elevated VWF-FVIII complex levels remained high for up to 3 weeks. Similarly, plasma VWFpp levels were also markedly elevated [median (IQR) 324·6 (267-524) iu/dl]. Interestingly however, the VWFpp/VWF:Ag ratio was reduced, demonstrating that decreased VWF clearance contributes to the elevated plasma VWF:Ag levels in severe COVID-19. Importantly, plasma VWFpp levels also correlated with clinical severity indices including the Sequential Organ Failure Assessment (SOFA) score, Sepsis-Induced Coagulopathy (SIC) score and the ratio of arterial oxygen partial pressure to fractional inspired oxygen (P/F ratio). Collectively, these findings support the hypothesis that sustained fulminant EC activation is occurring in severe COVID-19, and further suggest that VWFpp may have a role as a biomarker in this setting.


Subject(s)
COVID-19/blood , Endothelial Cells/metabolism , Protein Precursors/blood , SARS-CoV-2/metabolism , von Willebrand Factor/metabolism , Adult , Aged , Biomarkers/blood , Endothelial Cells/pathology , Female , Humans , Male , Middle Aged , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...