Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 290(2009): 20231327, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37876198

ABSTRACT

Cell death is physiologically induced by specific mediators. However, our power to trigger the process in selected cells is quite limited. The protandric shrimp Hippolyte inermis offers a possible answer. Here, we analyse a de novo transcriptome of shrimp post-larvae fed on diatoms. The sex ratio of diatom-fed shrimps versus shrimps fed on control diets was dramatically altered, demonstrating the disruption of the androgenic gland, and their transcriptome revealed key modifications in gene expression. A wide transcriptomic analysis, validated by real-time qPCR, revealed that ferroptosis represents the primary factor to re-shape the body of this invertebrate, followed by further apoptotic events, and our findings open biotechnological perspectives for controlling the destiny of selected tissues. Ferroptosis was detected here for the first time in a crustacean. In addition, this is the first demonstration of a noticeable effect prompted by an ingested food, deeply impacting the gene networks of a young metazoan, definitely determining its future physiology and sexual differentiation.


Subject(s)
Diatoms , Ferroptosis , Animals , Fatty Acids , Apoptosis , Gene Expression Profiling , Crustacea
2.
Front Physiol ; 14: 1161852, 2023.
Article in English | MEDLINE | ID: mdl-37288438

ABSTRACT

A considerable amount of coastal contamination is caused by wastes deriving from household and the degradation and the metabolism of plants and animals, even if our attention is commonly focused on industrial pollutants and contaminants. Waste pollutants are mainly represented by highly diluted soluble compounds and particles deriving from dead organisms. This complex combination, consisting of suspended particles and dissolved nutrients, has a significant impact on coastal planktonic and benthic organisms, also playing an active role in the global cycles of carbon. In addition, production practices are nowadays shifting towards recirculated aquaculture systems (RAS) and the genic responses of target organisms to the pollution deriving from animal metabolism are still scarcely addressed by scientific investigations. The reservoir of organic matter dissolved in the seawater is by far the least understood if compared to that on land, cause only a few compounds have been identified and their impacts on animals and plants are poorly understood. The tendency of these compounds to concentrate at interfaces facilitates the absorption of dissolved organic compound (DOC) onto suspended particles. Some DOC components are chemically combined with dissolved metals and form complexes, affecting the chemical properties of the seawater and the life of the coastal biota. In this research, we compared the reproductive performances of the common sea urchin Paracentrotus lividus cultured in open-cycle tanks to those cultured in a recirculating aquaculture system (RAS), where pollution progressively increased during the experiment due to animal escretions. Sea urchins were cultured for 7 months under these two conditions and their gametes were collected. Embryos resulting by in vitro fertilization were analyzed by Real Time qPCR to identify possible effects of pollution-induced stress. The fertility of sea urchins was evaluated, as well as the gonadosomatic indices and the histological features of gonads. Our results indicate that pollution due to excess of nutrients, event at sub-lethal concentrations, may hardly impact the reproductive potential of this key species and that chronic effects of stress are revealed by the analyses of survival rates and gene expression.

3.
Microorganisms ; 11(3)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36985336

ABSTRACT

In recent decades, various species of Mediterranean sea urchins, including Paracentrotus lividus, have been subject to widespread seasonal episodes of mass mortality whose causative agents are still unclear. In particular, P. lividus is subject to late winter events of mortality, due to a disease manifested by a massive loss of spines and the presence of greenish amorphous material on the tests (i.e., the sea urchin skeleton consisting of spongeous calcite). Documented mortality events show a seasonal epidemic diffusion and might produce economic losses also in aquaculture facilities, besides the environmental constraints to its diffusion. We collected individuals showing conspicuous lesions on the body surface and reared them in recirculated aquaria. Samples of external mucous were collected along with coelomic liquids and cultured to isolate bacterial and fungal strains, further submitted to molecular identification through the amplification of prokaryotic 16S rDNA. In addition, pools of infected sea urchins were reared in recirculated tanks after short baths in a formulated therapeutic compound and their survival rates were compared to non-treated individuals for variable periods. Here, we aimed at a redescription of the etiopathogenetic nature of the parasites and tested the efficacy of a possible treatment, to be proposed for aquaculture purposes.

4.
Int J Mol Sci ; 23(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36361581

ABSTRACT

The increase in the demand for Paracentrotus lividus roe, a food delicacy, causes increased pressure on its wild stocks. In this scenario, aquaculture facilities will mitigate the effects of anthropogenic pressures on the wild stocks of P. lividus. Consequently, experimental studies should be conducted to enhance techniques to improve efficient aquaculture practices for these animals. Here, we for the first time performed molecular investigations on cultured sea urchins. We aimed at understanding if maternal influences may significantly impact the life of future offspring, and how the culture conditions may impact the development and growth of cultured specimens. Our findings demonstrate that the outcomes of in vitro fertilization of P. lividus are influenced by maternal influences, but these effects are largely determined by culture conditions. In fact, twenty-three genes involved in the response to stress and skeletogenesis, whose expressions were measured by Real Time qPCR, were differently expressed in sea urchins cultured in two experimental conditions, and the results were largely modified in offspring deriving from two groups of females. The findings herein reported will be critical to develop protocols for the larval culture of the most common sea urchin, both for research and industrial production purposes for mass production.


Subject(s)
Paracentrotus , Animals , Female , Paracentrotus/genetics , Survival Rate , Reproduction/genetics , Larva , Gene Expression
5.
Int J Mol Sci ; 23(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36142592

ABSTRACT

Metabolomics represent the set of small organic molecules generally called metabolites, which are located within cells, tissues or organisms. This new "omic" technology, together with other similar technologies (genomics, transcriptomics and proteomics) is becoming a widely used tool in cancer research, aiming at the understanding of global biology systems in their physiologic or altered conditions. Cancer is among the most alarming human diseases and it causes a considerable number of deaths each year. Cancer research is one of the most important fields in life sciences. In fact, several scientific advances have been made in recent years, aiming to illuminate the metabolism of cancer cells, which is different from that of healthy cells, as suggested by Otto Warburg in the 1950s. Studies on sponges and algae revealed that these organisms are the main sources of the marine bioactive compounds involved in drug discovery for cancer treatment and prevention. In this review, we analyzed these two promising groups of marine organisms to focus on new metabolomics approaches for the study of metabolic changes in cancer cell lines treated with chemical extracts from sponges and algae, and for the classification of the chemical structures of bioactive compounds that may potentially prove useful for specific biotechnological applications.


Subject(s)
Neoplasms , Porifera , Animals , Aquatic Organisms/chemistry , Biotechnology , Humans , Metabolome , Neoplasms/drug therapy , Plant Extracts , Porifera/chemistry
6.
Mar Drugs ; 19(4)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920652

ABSTRACT

Physiological effects of algal metabolites is a key step for the isolation of interesting bioactive compounds. Invertebrate grazers may be fed on live diatoms or dried, pelletized, and added to compound feeds. Any method may reveal some shortcomings, due to the leaking of wound-activated compounds in the water prior to ingestion. For this reason, encapsulation may represent an important step of bioassay-guided fractionation, because it may assure timely preservation of the active compounds. Here we test the effects of the inclusion in alginate (biocompatible and non-toxic delivery system) matrices to produce beads containing two benthic diatoms for sea urchin Paracentrotus lividus feeding. In particular, we compared the effects of a diatom whose influence on P. lividus was known (Nanofrustulum shiloi) and those of a diatom suspected to be harmful to marine invertebrates, because it is often present in blooms (Striatella unipunctata). Dried N. shiloi and S. unipunctata were offered for one month after encapsulation in alginate hydrogel beads and the larvae produced by sea urchins were checked for viability and malformations. The results indicated that N. shiloi, already known for its toxigenic effects on sea urchin larvae, fully conserved its activity after inclusion in alginate beads. On the whole, benthic diatoms affected the embryogenesis of P. lividus, altering the expression of several genes involved in stress response, development, skeletogenesis and detoxification processes. Interactomic analysis suggested that both diatoms activated a similar stress response pathway, through the up-regulation of hsp60, hsp70, NF-κB, 14-3-3 ε and MDR1 genes. This research also demonstrates that the inclusion in alginate beads may represent a feasible technique to isolate diatom-derived bioactive compounds.


Subject(s)
Alginates/chemistry , Diatoms/metabolism , Paracentrotus/genetics , Animal Feed , Animals , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Nutritive Value , Paracentrotus/growth & development , Paracentrotus/metabolism , Protein Interaction Maps , Reproduction , Signal Transduction
7.
Biol Open ; 8(10)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31615766

ABSTRACT

Cyanobacteria may live in the water column and in the benthos of aquatic environments, or be symbionts of other organisms, as in the case of Phormidium-like cyanobacteria, known to influence the ecology of freshwater and marine ecosystems. A strain of Phormidium-like cyanobacteria has been recently isolated as a free-living epiphyte of leaves of Posidonia oceanica (L.) Delile in the Mediterranean sea and its biology and ecology are herein investigated. It was identified as Halomicronema metazoicum, previously known uniquely as a symbiont of marine sponges. We cultivated it in a range of light irradiances, temperatures and salinities, to establish the most suitable conditions for the production of allelopathic and toxic compounds. The bioactivity of its spent culture medium was measured by means of standard toxicity tests performed on two model organisms. Our results indicate that at least two bioactive compounds are produced, at low and high irradiance levels and at two temperatures. The main compounds influencing the survival of model organisms are produced at the highest temperature and high or intermediate irradiance levels. The present research contributes to the understanding of critical toxigenic relationships among cyanobacteria and invertebrates, possibly influencing the ecology of such a complex environment as P. oceanica Future isolation, identification and production of bioactive compounds will permit their exploitation for biotechnologies in the field of ecological conservation and medical applications.

8.
Sci Rep ; 9(1): 12336, 2019 08 26.
Article in English | MEDLINE | ID: mdl-31451728

ABSTRACT

Larvae of the caridean shrimp Hippolyte inermis persist in the plankton of the Mediterranean up to about one month. Since they need to reach appropriate coastal areas for their recruitment in seagrass meadows, we hypothesized that leaves of Posidonia oceanica or, alternatively, algae present in their epiphytic biofilms, might be physically recognised as target substrates and trigger larval metamorphosis and settlement. Chemical cues could improve the finding of suitable habitats for settlement. Thus, the effects of leaves of P. oceanica and biofilms of the diatom Cocconeis scutellum parva, seasonally abundant in the leaf epiphytic stratum, were investigated along with the effect of volatile organic compounds (VOCs) extracted from the epiphytic diatom. The physical induction with P. oceanica accelerated larval settlement, stimulating an earlier and faster metamorphosis of larvae. C. scutellum parva produced a weaker effect on settlement; however, diatom's VOCs had evident influence and accelerated metamorphosis and settlement. We concluded that such chemical cues as the VOCs produced by epiphytic diatoms, reinforce the effect of physical cues for the identification of suitable settlement locations for this shrimp.


Subject(s)
Alismatales/parasitology , Crustacea/growth & development , Metamorphosis, Biological , Analysis of Variance , Animals , Female , Larva/physiology , Survival Analysis , Time Factors
9.
Toxins (Basel) ; 11(2)2019 02 08.
Article in English | MEDLINE | ID: mdl-30747108

ABSTRACT

Organisms adaptable to extreme conditions share the ability to establish protective biofilms or secrete defence toxins. The extracellular substances that are secreted may contain monosaccharides and other toxic compounds, but environmental conditions influence biofilm characteristics. Microorganisms that are present in the same environment achieve similar compositions, regardless of their phylogenetic relationships. Alternatively, cyanobacteria phylogenetically related may live in different environments, but we ignore if their physiological answers may be similar. To test this hypothesis, two strains of cyanobacteria that were both ascribed to the genus Halomicronema were isolated. H. metazoicum was isolated in marine waters off the island of Ischia (Bay of Naples, Italy), free living on leaves of Posidonia oceanica. Halomicronema sp. was isolated in adjacent thermal waters. Thus, two congeneric species adapted to different environments but diffused in the same area were polyphasically characterized by microscopy, molecular, and toxicity analyses. A variable pattern of toxicity was exhibited, in accordance with the constraints imposed by the host environments. Cyanobacteria adapted to extreme environments of thermal waters face a few competitors and exhibit a low toxicity; in contrast, congeneric strains that have adapted to stable and complex environments as seagrass meadows compete with several organisms for space and resources, and they produce toxic compounds that are constitutively secreted in the surrounding waters.


Subject(s)
Alismatales/microbiology , Cyanobacteria/isolation & purification , Hot Springs/microbiology , Animals , Cyanobacteria/genetics , Embryo, Nonmammalian/microbiology , Environmental Monitoring , Grassland , Islands , Italy , Phylogeny , Plant Leaves/microbiology , RNA, Ribosomal, 16S , Sea Urchins/microbiology , Seawater/microbiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...