Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Anal Chem ; 96(16): 6275-6281, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38600735

ABSTRACT

Concentration determination is a fundamental hallmark of protein reagent characterization, providing a means to ensure reproducibility and unify measurements from various assays. However, lot-to-lot differences in protein activity often still occur, leading to uncertainty in the accuracy of downstream measurements. Here, we postulate that those differences are caused by a misrepresentation of the protein concentration as measured by traditional total protein techniques, which can include multiple types of inactive protein species. To overcome this, we developed a standardized method to quantify a protein's active concentration via calibration-free concentration analysis (CFCA). As a pilot study, we compare the biophysical and immunoassay responses from three batches of recombinant soluble lymphocyte-activation gene 3 (sLAG3), as defined by either their total or active concentrations. Defining the sLAG3 reagents by their assay-specific concentration improved consistency in reported kinetic binding parameters and decreased immunoassay lot-to-lot coefficients of variation (CVs) by over 600% compared to the total protein concentration. These findings suggest that the total concentration of a protein reagent may not be the ideal metric to correlate in-assay signals between lots, and by instead quantifying the concentrations of a reagent's assay-specific epitopes, CFCA may prove a useful tool in overcoming lot-to-lot variability.

2.
Clin Pharmacol Ther ; 114(3): 664-672, 2023 09.
Article in English | MEDLINE | ID: mdl-37422675

ABSTRACT

Recently, multiple chimeric antigen receptor T-cell (CAR-T)-based therapies have been approved for treating hematological malignancies, targeting CD19 and B-cell maturation antigen. Unlike protein or antibody therapies, CAR-T therapies are "living cell" therapies whose pharmacokinetics are characterized by expansion, distribution, contraction, and persistence. Therefore, this unique modality requires a different approach for quantitation compared with conventional ligand binding assays implemented for most biologics. Cellular (flow cytometry) or molecular assays (polymerase chain reaction (PCR)) can be deployed with each having unique advantages and disadvantages. In this article, we describe the molecular assays utilized: quantitative PCR (qPCR), which was the initial platform used to estimate transgene copy numbers and more recently droplet digital PCR (ddPCR) which quantitates the absolute copy numbers of CAR transgene. The comparability of the two methods in patient samples and of each method across different matrices (isolated CD3+ T-cells or whole blood) was also performed. The results show a good correlation between qPCR and ddPCR for the amplification of same gene in clinical samples from a CAR-T therapy trial. In addition, our studies show that the qPCR-based amplification of transgene levels was well-correlated, independent of DNA sources (either CD3+ T-cells or whole blood). Our results also highlight that ddPCR can be a better platform for monitoring samples at the early phase of CAR-T dosing prior to expansion and during long-term monitoring as they can detect samples with very low copy numbers with high sensitivity, in addition to easier implementation and sample logistics.


Subject(s)
Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Kinetics , Polymerase Chain Reaction/methods , T-Lymphocytes/metabolism , Immunotherapy, Adoptive/methods
3.
AAPS J ; 25(3): 35, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37012501

ABSTRACT

Pre-existing adeno-associated viruses (AAV) neutralizing antibodies (NAb) can prevent AAV vectors from transducing target tissues. The immune responses can include binding/total antibodies (TAb) and neutralizing antibodies (NAb). This study is aimed at comparing total antibody assay (TAb) and cell-based NAb assay against AAV8 to help inform the best assay format for patient exclusion criteria. We developed a chemiluminescence-based enzyme-linked immunosorbent assay to analyze AAV8 TAb in human serum. The specificity of AAV8 TAb was determined using a confirmatory assay. A COS-7-based assay was used to analyze anti-AAV8 NAbs. The TAb screening cut point factor was determined to be 2.65, and the confirmatory cut point (CCP) was 57.1%. The prevalence of AAV8 TAb in 84 normal subjects was 40%, of which 24% were NAb positive and 16% were NAb negative. All NAb-positive subjects were confirmed to be TAb-positive and also passed the CCP-positive criteria. All 16 NAb-negative subjects did not pass the CCP criterion for the positive specificity test. There was a high concordance between AAV8 TAb confirmatory assay and NAb assay. The confirmatory assay improved the specificity of the TAb screening test and confirmed neutralizing activity. We proposed a tiered assay approach, in which an anti-AAV8 screening assay should be followed by a confirmatory assay during pre-enrollment for patient exclusions for AAV8 gene therapy. This approach can be used in lieu of developing a NAb assay and can be also implemented as a companion diagnostic assay for post-marketing seroreactivity assessments due to ease of development and use.


Subject(s)
Antibodies, Neutralizing , Genetic Therapy , Humans , Immunologic Tests , Enzyme-Linked Immunosorbent Assay , Genetic Vectors
4.
AAPS J ; 24(1): 4, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34853961

ABSTRACT

Evolving immunogenicity assay performance expectations and a lack of harmonized anti-drug antibody validation testing and reporting tools have resulted in significant time spent by health authorities and sponsors on resolving filing queries. Following debate at the American Association of Pharmaceutical Sciences National Biotechnology Conference, a group was formed to address these gaps. Over the last 3 years, 44 members from 29 organizations (including 5 members from Europe and 10 members from FDA) discussed gaps in understanding immunogenicity assay requirements and have developed harmonization tools for use by industry scientists to facilitate filings to health authorities. Herein, this team provides testing and reporting strategies and tools for the following assessments: (1) pre-study validation cut point; (2) in-study cut points, including procedures for applying cut points to mixed populations; (3) system suitability control criteria for in-study plate acceptance; (4) assay sensitivity, including the selection of an appropriate low positive control; (5) specificity, including drug and target tolerance; (6) sample stability that reflects sample storage and handling conditions; (7) assay selectivity to matrix components, including hemolytic, lipemic, and disease state matrices; (8) domain specificity for multi-domain therapeutics; (9) and minimum required dilution and extraction-based sample processing for titer reporting.


Subject(s)
Antibodies , Biological Assay , Europe , United States
5.
Toxicol Sci ; 183(1): 93-104, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34240189

ABSTRACT

BMS-986251 is a retinoid-related orphan receptor γt (RORγt) inverse agonist that was in development for the treatment of autoimmune diseases. RORγt is a nuclear hormone receptor and transcription factor that is involved in the differentiation and function of T helper 17 cells. RORγt-deficient (constitutive or conditional) mice develop thymic lymphomas with >50% mortality at 4 months, whereas heterozygous mice are normal. A 6-month study was conducted in rasH2-Tg hemizygous mice to assess the potential carcinogenicity of BMS-986251. BMS-986251 was administered once daily by oral gavage to groups of 27 mice/sex at doses of 0 (water control), 0 (vehicle control), 5, 25, or 75 mg/kg. The positive control, N-methyl-N-nitrosourea, was administered by a single intraperitoneal injection to 15 mice/sex at a dose of 75 mg/kg. There were no tumors attributed to BMS-986251 except for thymic lymphomas. Thymic lymphoma was observed in 1 male (3.7%) and 3 females (11.1%) at the mid dose, and 6 females (22.2%) at the high dose. No lymphomas were observed in the negative control groups whereas the incidence of lymphomas in the positive control group was 47-60%. The incidence of thymic lymphomas in the BMS-986251-treated groups was higher than published literature and test facility historical control data. Furthermore, increased thymic lymphoid cellularity (lymphoid hyperplasia) was observed at the mid dose in males and at all doses in females. Since lymphoid hyperplasia may represent a preneoplastic change, a no-effect dose for potential tumor induction was not identified in this study. These results led to the discontinuation of BMS-986251 and underscore the challenges in targeting RORγt for drug development.


Subject(s)
Lymphoma , Nuclear Receptor Subfamily 1, Group F, Member 3 , Animals , Carcinogenicity Tests , Female , Hyperplasia , Lymphoma/chemically induced , Lymphoma/genetics , Male , Mice , Mice, Transgenic
6.
Bioanalysis ; 13(5): 395-407, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33661021

ABSTRACT

Background: To support the clinical studies of cabiralizumab, an immunogenicity assay for detecting anti-cabiralizumab antibodies is required. Results: Strategies were developed to overcome two major bioanalytical challenges: poor drug tolerance of the anti-drug antibodies assay and very low cut point observed in the screening and confirmatory assays. By using acid dissociation (400 mM glycine solution at pH 2.0), drug tolerance of 200 µg/ml drug was achieved for both the screening and confirmatory assays. Effects of biological matrix (disease state vs normal serum) and assay conditions (capture/detector reagent concentration, minimum required dilution, acid pretreatment) on assay cut points were systematically evaluated. Conclusion: A bridging immunogenicity assay for detecting anti-cabiralizumab antibodies in human serum has been successfully developed, validated and applied to clinical studies.


Subject(s)
Antibodies, Monoclonal, Humanized/blood , Biological Assay , Drug Tolerance , Humans
7.
AAPS J ; 22(6): 135, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33098040

ABSTRACT

The microsampling workshop generated recommendations pertaining to blood sampling site (venous blood versus capillary blood), when to conduct a bridging study, statistical approaches to establish correlation/concordance and deciding on sample size, opportunities and challenges with patient-centric sampling, and how microsampling technology can enrich clinical drug development. Overall, the goal was to provide clarity and recommendations and enable the broader adoption of microsampling supporting patients' needs, convenience, and the transformation from clinic-centric to patient-centric drug development. The need and adoption of away-from-clinic sampling techniques has become critical to maintain patient safety during the current COVID-19 pandemic.


Subject(s)
Blood Specimen Collection , Patient-Centered Care , Drug Development , Humans
8.
Bioanalysis ; 12(12): 823-834, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32558588

ABSTRACT

Historically, ligand-binding assays for pharmacokinetic samples employed duplicate rather than singlet-based analysis. Herein, the Translational and absorption, distribution, metabolism and excretion (ADME) Sciences Leadership Group of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) presents a study aiming to determine the value of duplicate versus singlet-based testing. Based on analysis of data collected from eight organizations for 20 drug candidates representing seven molecular types and four analytical platforms, statistical comparisons of validation and in-study quality controls and study unknown samples demonstrated good agreement across duplicate sets. Simulation models were also used to assess the impact of sample duplicate characteristics on bioequivalence outcomes. Results show that testing in singlet is acceptable for assays with %CV ≤15% between duplicates. Singlet-based approach is proposed as the default for ligand-binding assays while a duplicate-based approach is needed where imprecision and/or inaccuracy impede the validation of the assay.


Subject(s)
Pharmaceutical Preparations/analysis , Quality Control , Binding Sites , Drug Development , Ligands
9.
Bioanalysis ; 12(6): 419-426, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32285680

ABSTRACT

Bioanalytical methods evolve throughout clinical development timelines, resulting in the need for establishing equivalency or correlation between different methods to enable comparison of data across different studies. This is accomplished by the conduct of cross validations and correlative studies to compare and describe the relationship. The incurred sample reanalysis acceptance criterion seems to be adopted universally for cross validations and correlative studies; however, this does not identify any trends or biases between the two methods (datasets) being compared. Presented here are graphing approaches suitable for comparing two methods and describing equivalence or correlation. This article aims to generate awareness on graphing techniques that can be adopted during cross validations and correlative studies.


Subject(s)
Biological Assay/methods , Humans
10.
Bioanalysis ; 11(24): 2207-2244, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31820675

ABSTRACT

The 2019 13th Workshop on Recent Issues in Bioanalysis (WRIB) took place in New Orleans, LA, USA on April 1-5, 2019 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, week-long event - a full immersion week of bioanalysis, biomarkers, immunogenicity and gene therapy. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small- and large-molecule bioanalysis involving LCMS, hybrid LBA/LCMS, LBA cell-based/flow cytometry assays and qPCR approaches. This 2019 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2019 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers New Insights in Biomarker Assay Validation, Current & Effective Strategies for Critical Reagent Management, Flow Cytometry Validation in Drug Discovery & Development & CLSI H62, Interpretation of the 2019 FDA Immunogenicity Guidance and Gene Therapy Bioanalytical Challenges. Part 1 (Innovation in Small Molecules and Oligonucleotides & Mass Spectrometry Method Development Strategies for Large Molecule Bioanalysis) and Part 2 (Recommendations on the 2018 FDA BMV Guidance, 2019 ICH M10 BMV Draft Guideline and regulatory agencies' input on bioanalysis, biomarkers, immunogenicity and gene therapy) are published in volume 11 of Bioanalysis, issues 22 and 23 (2019), respectively.


Subject(s)
Biological Assay/methods , Biomarkers/metabolism , Flow Cytometry/methods , Genetic Therapy/methods , United States Food and Drug Administration/standards , History, 21st Century , Humans , United States
11.
J Immunol Methods ; 462: 34-41, 2018 11.
Article in English | MEDLINE | ID: mdl-30099014

ABSTRACT

Biological therapeutics are foreign antigens and can potentially induce immune response resulting in the formation of anti-drug antibodies (ADA), which in turn may lead to a wide range of side effects. Neutralizing Ab (NAb) is a subset of ADA that can bind to the pharmacological activity regions of therapeutic to inhibit or complete neutralize its clinical efficacy. A cell-based functional NAb assay is preferred to characterize its neutralization activity. However, cell-based NAb assays are often vulnerable to drug interference, as well as interference from numerous serum factors, including but not limited to growth factors and disease-related cytokines. Bead Extraction with Acid Dissociation (BEAD) has been successfully applied to remove circulating drug and/or other interfering factors from human serum samples, thereby enriching for ADA/NAb. However, the harsh acid used in the extraction procedure can cause irreversible denaturing of NAb and lead to underestimated NAb measurement. Herein we describe a new approach when acid-dissociation is not optimal for a PEGylated domain antibody (Ab). We further demonstrate that heating at 62 °C can not only dissociate drug/ADA/NAb immune complex but also selectively and irreversibly denature domain Ab drug due to much lower thermal stability of the domain Ab, when compared to that of full antibodies. The irreversible denaturing of the drug favors the formation of an immune complex between ADA/NAb and the added biotinylated drug thus increasing the recovery of ADA/NAb from samples. We call this new procedure Bead Extraction with Heat Dissociation (BEHD), which can potentially be applied to other NAb assays that have poor compatibility with acid dissociation.


Subject(s)
Antibodies, Neutralizing/chemistry , Antigen-Antibody Complex/chemistry , Biological Assay/methods , Hot Temperature , Humans , Jurkat Cells
12.
Bioanalysis ; 10(16): 1273-1287, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29947549

ABSTRACT

Ipilimumab is the first US FDA-approved immune checkpoint-blocking antibody drug to harness the patient's own immune cells. One of the postmarketing requirements is to develop a cell-based neutralizing antibody assay. Here, we share some of the most challenging aspects encountered during the assay development: new cell line construction; an unexpected inhibition of T-cell activation by low concentrations of ipilimumab; and two issues caused by sample pretreatment with acid dissociation to overcome drug interference: instability of neutralizing antibody positive control at low pH, and incompatibility of commonly used acid dissociation buffers in the cell assay. After troubleshooting and optimization, we successfully validated the assay and used the assay to test clinical samples to date.


Subject(s)
Antibodies, Neutralizing/immunology , Immunoassay/methods , Ipilimumab/analysis , Humans , Hydrogen-Ion Concentration , Ipilimumab/immunology , Jurkat Cells
13.
J Immunol Methods ; 448: 91-104, 2017 09.
Article in English | MEDLINE | ID: mdl-28625864

ABSTRACT

We developed a homogeneous bridging anti-drug antibody (ADA) assay on an electro chemiluminescent immunoassay (ECLIA) platform to support the immunogenicity evaluation of a dimeric domain antibody (dAb) therapeutic in clinical studies. During method development we evaluated the impact of different types of acid at various pH levels on polyclonal and monoclonal ADA controls of differing affinities and on/off rates. The data shows for the first time that acids of different pH can have a differential effect on ADA of various affinities and this in turn impacts assay sensitivity and drug tolerance as defined by these surrogate controls. Acid treatment led to a reduction in signal of intermediate and low affinity ADA, but not high affinity or polyclonal ADA. We also found that acid pretreatment is a requisite for dissociation of drug bound high affinity ADA, but not for low affinity ADA-drug complexes. Although we were unable to identify an acid that would allow a 100% retrieval of ADA signal post-treatment, use of glycine pH3.0 enabled the detection of low, intermediate and high affinity antibodies (Abs) to various extents. Following optimization, the ADA assay method was validated for clinical sample analysis. Consistencies within various parameters of the clinical data such as dose dependent increases in ADA rates and titers were observed, indicating a reliable ADA method. Pre- and post-treatment ADA negative or positive clinical samples without detectable drug were reanalyzed in the absence of acid treatment or presence of added exogenous drug respectively to further assess the effectiveness of the final acid treatment procedure. The overall ADA results indicate that assay conditions developed and validated based on surrogate controls sufficed to provide a reliable clinical data set. The effect of low pH acid treatment on possible pre-existing ADA or soluble multimeric target in normal human serum was also evaluated, and preliminary data indicate that acid type and pH also affect drug-specific signal differentially in individual samples. The results presented here represent the most extensive analyses to date on acid treatment of a wide range of ADA affinities to explore sensitivity and drug tolerance issues. They have led to a refinement of our current best practices for ADA method development and provide a depth of data to interrogate low pH mediated immune complex dissociation.


Subject(s)
Acids/chemistry , Antibodies, Anti-Idiotypic/immunology , Antibodies, Monoclonal/immunology , Antineoplastic Agents/immunology , Electrochemical Techniques , Immunoassay/methods , Animals , Antibodies, Anti-Idiotypic/blood , Antibodies, Anti-Idiotypic/chemistry , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/chemistry , Antibody Affinity , Antibody Specificity , Antineoplastic Agents/adverse effects , Antineoplastic Agents/blood , Antineoplastic Agents/chemistry , Binding Sites, Antibody , Drug Stability , Glycine/chemistry , Humans , Hydrogen-Ion Concentration , Mice, Inbred BALB C , Predictive Value of Tests , Protein Binding , Protein Denaturation , Protein Stability , Reproducibility of Results
14.
AAPS J ; 19(1): 82-91, 2017 01.
Article in English | MEDLINE | ID: mdl-27796911

ABSTRACT

The Gyrolab™ xP is a microfluidic platform for conducting ligand binding assays (LBAs) and is recognized for its utility in discovery bioanalysis. However, few reports have focused on the technology for regulated bioanalysis. This technology has the advantage of low reagent consumption, low sample volume, and automated ligand binding methods. To improve bioanalysis testing timelines and increase the speed at which biotherapeutics are delivered to patients, we evaluated the technology for its potential to deliver high-quality data at reduced testing timelines for regulated bioanalysis. Six LBA methods were validated to support bioanalysis for GLP toxicokinetic or clinical pharmacokinetic studies. Validation, sample analysis, and method transfer are described. In total, approximately 4000 samples have been tested for regulated bioanalysis to support 6 GLP toxicology studies and approximately 1000 samples to support 2 clinical studies. Gyrolab™ xP had high run pass rates (≥83%) and high incurred sample reanalysis (ISR) pass rates (>94%). The maximum total error observed across all QC levels for a given assay was <30% for all six LBAs. High instrument response precision (CV ≤5%) was observed across compact discs (CDs), and methods were validated to use a single standard curve across multiple CDs within a Gyrolab™ xP run. Reduced bioanalysis timelines were achieved compared to standard manual plate-based methods, and methods were successfully transferred across testing labs, paving the way for this platform for use in late-stage clinical development.


Subject(s)
Drug Discovery/instrumentation , Immunoassay/instrumentation , Microfluidic Analytical Techniques/instrumentation , Pharmaceutical Preparations/analysis , Animals , Automation , Equipment Design , Humans , Ligands , Limit of Detection , Pharmaceutical Preparations/blood , Protein Binding , Reproducibility of Results , Software
15.
Vet Clin Pathol ; 45(2): 232-43, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27061515

ABSTRACT

BACKGROUND: In preclinical studies with cynomolgus macaques, it is common to have one or more females presenting with menses. Published literature indicates that the blood lost during menses causes decreases in red blood cell mass variables (RBC, HGB, and HCT), which would be a confounding factor in the interpretation of drug-related effects on clinical pathology data, but no scientific data have been published to support this claim. OBJECTIVES: This investigation was conducted to determine if the amount of blood lost during menses in cynomolgus macaques has an effect on routine hematology and serum chemistry variables. METHODS: Ten female cynomolgus macaques (Macaca fascicularis), 5 to 6.5 years old, were observed daily during approximately 3 months (97 days) for the presence of menses. Hematology and serum chemistry variables were evaluated twice weekly. RESULTS: The results indicated that menstruation affects the erythrogram including RBC, HGB, HCT, MCHC, MCV, reticulocyte count, RDW, the leukogram including neutrophil, lymphocyte, and monocyte counts, and chemistry variables, including GGT activity, and the concentrations of total proteins, albumin, globulins, and calcium. The magnitude of the effect of menstruation on susceptible variables is dependent on the duration of the menstrual phase. Macaques with menstrual phases lasting ≥ 7 days are more likely to develop changes in variables related to chronic blood loss. CONCLUSIONS: In preclinical toxicology studies with cynomolgus macaques, interpretation of changes in several commonly evaluated hematology and serum chemistry variables requires adequate clinical observation and documentation concerning presence and duration of menses. There is a concern that macaques with long menstrual cycles can develop iron deficiency anemia due to chronic menstrual blood loss.


Subject(s)
Chemistry Techniques, Analytical/veterinary , Hematologic Tests/veterinary , Menstruation , Animals , Female , Macaca fascicularis , Reference Values , Reproducibility of Results
16.
Article in English | MEDLINE | ID: mdl-27063376

ABSTRACT

INTRODUCTION: Preclinical assessment for alterations in cardiac ventricular function for drug candidates has not been a focus of ICH S7b guidelines for cardiovascular safety studies, but there is growing interest given that the cardiovascular risk is associated with positive and negative inotropes. METHODS: From 2003 through 2013, 163 telemetry studies with left-ventricular function analyses were conducted in dogs and monkeys at Bristol Myers Squibb (BMS) in support for drug development programs. The ability of the telemetry system to detect changes in cardiac contractility was verified with positive control agents pimobendan and atenolol. Control data from a subset of studies were analyzed to determine dP/dt reference range values, and minimum detectable mean differences (control vs. treated) for statistical significance. RESULTS: Median minimum detectable differences for dogs ranged from 14 to 21% for positive dP/dt and 11 to 21% for negative dP/dt. For monkeys, median minimum detectable differences were 25 and 14% for positive and negative dP/dt, respectively. For BMS programs, 15 drug candidates were identified that produced primary effects on contractility. Changes in contractility that were associated with, and potentially secondary to, drug-related effects on heart rate or systemic blood pressure were observed with an additional 29 drug candidates. DISCUSSION: Changes in contractility have been observed in large animals during drug development studies at BMS over the past 10years. Model sensitivity has been demonstrated and a dP/dt beat-to-beat cloud analysis tool has been developed to help distinguish primary effects from those potentially secondary to systemic hemodynamic changes.


Subject(s)
Heart Function Tests/methods , Heart/drug effects , Ventricular Function, Left/drug effects , Animals , Anti-Arrhythmia Agents/pharmacology , Atenolol/pharmacology , Blood Pressure/drug effects , Cardiotonic Agents/pharmacology , Dogs , Drug Evaluation, Preclinical , Female , Heart Rate/drug effects , Macaca fascicularis , Male , Myocardial Contraction , Pyridazines/pharmacology , Reference Values , Telemetry
17.
AAPS J ; 18(4): 989-99, 2016 07.
Article in English | MEDLINE | ID: mdl-27116021

ABSTRACT

Elotuzumab is a first in class humanized IgG1 monoclonal antibody for the treatment of multiple myeloma (MM). Elotuzumab targets the glycoprotein signaling lymphocyte activation molecule family 7 (SLAMF7, also described as CS1 or CRACC) which is expressed on the surface of myeloma cells and a subset of immune cells, including natural killer cells. A soluble version of SLAMF7 (sSLAMF7) has also been reported in MM patients but has not been evaluated as a potential biomarker following therapeutic intervention. In order to measure serum levels of sSLAMF7, two immunoassays were developed to monitor changes in circulating sSLAMF7 before and after elotuzumab treatment. Free (drug-unbound) and total (drug-bound and unbound) electrochemiluminescence (ECL) ELISA assays were developed and validated following a fit for purpose (FFP) methodology. Both assays met analytical acceptance criteria for precision, drug interference, dilution linearity, spike recovery, parallelism, and stability. Both exhibited the range and sensitivity necessary to measure clinical samples with an LLOQ of 51.2 pg/mL and ULOQs of 160 (free) and 800 ng/mL (total). Previously described assays were unable to detect sSLAMF7 in healthy individuals. However, due to the increased sensitivity of these new assays, low but measurable sSLAMF7 levels were detected in all normal healthy sera evaluated and were significantly elevated in MM patients. Cohort statistics revealed a significant increase of circulating sSLAMF7 in MM patients versus normal controls and both significant decreases in free and increases in total levels of protein post-elotuzumab treatment.


Subject(s)
Antibodies, Monoclonal, Humanized/blood , Antineoplastic Agents/blood , Signaling Lymphocytic Activation Molecule Family/blood , Calibration , Electrochemistry/methods , Enzyme-Linked Immunosorbent Assay , Humans , Luminescence , Multiple Myeloma/blood , Quality Control , Recombinant Proteins/chemistry , Reproducibility of Results
18.
AAPS J ; 18(1): 1-14, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26377333

ABSTRACT

Multiplex ligand binding assays (LBAs) are increasingly being used to support many stages of drug development. The complexity of multiplex assays creates many unique challenges in comparison to single-plexed assays leading to various adjustments for validation and potentially during sample analysis to accommodate all of the analytes being measured. This often requires a compromise in decision making with respect to choosing final assay conditions and acceptance criteria of some key assay parameters, depending on the intended use of the assay. The critical parameters that are impacted due to the added challenges associated with multiplexing include the minimum required dilution (MRD), quality control samples that span the range of all analytes being measured, quantitative ranges which can be compromised for certain targets, achieving parallelism for all analytes of interest, cross-talk across assays, freeze-thaw stability across analytes, among many others. Thus, these challenges also increase the complexity of validating the performance of the assay for its intended use. This paper describes the challenges encountered with multiplex LBAs, discusses the underlying causes, and provides solutions to help overcome these challenges. Finally, we provide recommendations on how to perform a fit-for-purpose-based validation, emphasizing issues that are unique to multiplex kit assays.


Subject(s)
Biomarkers/analysis , Ligands , Humans , Reagent Kits, Diagnostic/standards , Reference Standards , Reproducibility of Results
19.
Bioanalysis ; 7(22): 2913-25, 2015.
Article in English | MEDLINE | ID: mdl-26573485

ABSTRACT

The 2015 9th Workshop on Recent Issues in Bioanalysis (9th WRIB) took place in Miami, Florida with participation of over 600 professionals from pharmaceutical and biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. It is once again a 5-day week long event - a full immersion bioanalytical week - specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest in bioanalysis. The topics covered included both small and large molecules, and involved LCMS, hybrid LBA/LCMS, LBA approaches including the focus on biomarkers and immunogenicity. This 2015 White Paper encompasses recommendations that emerged from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to advance scientific excellence, improve quality and deliver better regulatory compliance. Due to its length, the 2015 edition of this comprehensive White Paper has been divided into three parts. Part 1 covers the recommendations for small molecule bioanalysis using LCMS. Part 2 (hybrid LBA/LCMS and regulatory agencies' inputs) and Part 3 (large molecule bioanalysis using LBA, biomarkers and immunogenicity) will also be published in volume 7 of Bioanalysis, issues 23 and 24, respectively.


Subject(s)
Biomarkers/analysis , Chromatography, Liquid/standards , Mass Spectrometry/standards , Small Molecule Libraries/analysis , Humans
20.
Bioanalysis ; 7(13): 1619-31, 2015.
Article in English | MEDLINE | ID: mdl-26226311

ABSTRACT

Identification and characterization of anti-drug antibodies is a critical component of biopharmaceutical drug development. The tiered approach for immunogenicity testing consists of screening, confirmatory, and characterization assays. Herein, we provide recommendations for confirmatory assays by expanding upon published guidance and present common practices across the industry. The authors recommend scientific approaches for development and validation of confirmatory assays using competition methods in ligand-binding assays, along with statistical formulae for routine use and validation. The paper will assist in understanding the confirmatory assay, and carefully implementing validation criteria a priori, as well as during sample analysis. These approaches represent the authors' current knowledge and practices, with the aim that more uniform practices will be applied across the industry.


Subject(s)
Antibodies, Monoclonal/immunology , Biological Assay/methods , Antibody Formation , Drug Design , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...