Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39065273

ABSTRACT

Auxetics are materials displaying a negative Poisson's ratio, i.e., getting thicker in one or both transverse axes when subject to strain. In 2018, liquid crystal elastomers (LCEs) displaying auxetic behaviour, achieved via a biaxial reorientation, were first reported. Studies have since focused on determining the physics underpinning the auxetic response, with investigations into structure-property relationships within these systems so far overlooked. Herein, we report the first structure-property relationships in auxetic LCEs, examining the effect of changes to the length of the spacer chain. We demonstrate that for LCEs with between six and four carbons in the spacer, an auxetic response is observed, with the threshold strain required to achieve this response varying from 56% (six carbon spacers) to 81% (four carbon spacers). We also demonstrate that Poisson's ratios as low as -1.3 can be achieved. Further, we report that the LCEs display smectic phases with spacers of seven or more carbons; the resulting internal constraints cause low strains at failure, preventing an auxetic response. We also investigate the dependence of the auxetic threshold on the dynamics of the samples, finding that when accounting for the glass transition temperature of the LCEs, the auxetic thresholds converge around 56%, regardless of spacer length.

2.
Nat Commun ; 15(1): 5845, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992039

ABSTRACT

Spontaneous symmetry breaking and emergent polar order are each of fundamental importance to a range of scientific disciplines, as well as generating rich phase behaviour in liquid crystals (LCs). Here, we show the union of these phenomena to lead to two previously undiscovered polar liquid states of matter. Both phases have a lamellar structure with an inherent polar ordering of their constituent molecules. The first of these phases is characterised by polar order and a local tilted structure; the tilt direction processes about a helix orthogonal to the layer normal, the period of which is such that we observe selective reflection of light. The second new phase type is anti-ferroelectric, with the constituent molecules aligning orthogonally to the layer normal. This has led us to term the phases the Sm C P H and SmAAF phases, respectively. Further to this, we obtain room temperature ferroelectric nematic (NF) and Sm C P H phases via binary mixture formulation of the novel materials described here with a standard NF compound (DIO), with the resultant materials having melting points (and/or glass transitions) which are significantly below ambient temperature. The new soft matter phase types discovered herein can be considered as electrical analogues of topological structures of magnetic spins in hard matter.

3.
Macromolecules ; 57(11): 5218-5229, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882196

ABSTRACT

Liquid crystal elastomers (LCEs) are polymeric materials that are proposed for a range of applications. However, to reach their full potential, it is desirable to have as much flexibility as possible in terms of the sample dimensions, while maintaining well-defined alignment. In this work, photoinduced electron/energy transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization is applied to the synthesis of LCEs for the first time. An initial LCE layer (∼100 µm thickness) is partially cured before a second layer of the precursor mixture is added. The curing reaction is then resumed and is observed by FTIR to complete within 15 min of irradiation, yielding samples of increased thickness. Monodomain samples that exhibit an auxetic response and are of thickness 250-300 µm are consistently achieved. All samples are characterized thermally, mechanically, and in terms of their order parameters. The LCEs have physical properties comparable to those of analogous LCEs produced via free-radical polymerization.

4.
Macromolecules ; 57(5): 2030-2038, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38495386

ABSTRACT

Determining the tunability of the optical coefficients, order parameter, and transition temperatures in optically transparent auxetic liquid crystal elastomers (LCEs) is vital for applications, including impact-resistant glass laminates. Here, we report measurements of the refractive indices, order parameters, and transition temperatures in a family of acrylate-based LCEs in which the mesogenic content varies from ∼50 to ∼85%. Modifications in the precursor mixture allow the order parameter, ⟨P2⟩, of the LCE to be adjusted from 0.46 to 0.73. The extraordinary refractive index changes most significantly with composition, from ∼1.66 to ∼1.69, in moving from a low to high mesogenic content. We demonstrate that all LCE refractive indices decrease with increasing temperature, with temperature coefficients of ∼10-4 K-1, comparable to optical plastics. In these LCEs, the average refractive index and the refractive index anisotropy are tunable via both chemical composition and order parameter control; we report design rules for both.

5.
Soft Matter ; 20(11): 2562-2567, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38410086

ABSTRACT

Flexible strain sensors have drawn a lot of interest in various applications including human mobility tracking, rehabilitation/personalized health monitoring, and human-machine interaction, but suffer from interference of electromagnetic (EM). To overcome the EM interference, flexible force sensors without sensitive electronic elements have been developed, with drawbacks of bulky modules that hinders their applications in remote measurement with power-free environment. Therefore, it is highly desirable to fabricate a compact wireless flexible force sensor but it is still a challenge. Here, we demonstrate a fluorescent flexible force sensor based on aggregation-induced emission (AIE) doped liquid crystal elastomer (LCE) experimentally. The proposed force sensor film can be used to measure force through the variation of fluorescent intensity induced by the extension or contraction of LCE film, which leads to reduce or increase of the aggregation degree of AIE molecules within. This compact wireless force sensor features lightweight, low-cost, high flexibility, passivity and anti-EM interference, which also enables the naked eye observation. The proposed sensor provides inspiration and a platform for a new concept of non-contact detection, showing application potential in human-friendly interactive electronics and remote-control integration platform.

6.
Soft Matter ; 20(3): 672-680, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38164818

ABSTRACT

The ferroelectric nematic phase (NF) is a recently discovered phase of matter in which the orientational order of the conventional nematic liquid crystal state is augmented with polar order. Atomistic simulations suggest that the polar NF phase would be denser than conventional nematics owing to contributions from polar order. Using an oscillating U-tube densitometer, we obtain detailed temperature-dependent density values for a selection of conventional liquid crystals with excellent agreement with earlier reports. Having demonstrated the validity of our method, we then record density as a function of temperature for M5, a novel room-temperature ferroelectric nematic material. We present the first experimental density data for a NF material as well as density data for a nematic that has not previously been reported. We find that the room-temperature NF material shows a large (>1.3 g cm-3) density at all temperatures studied, notably including phases without polar order. An increase in density at phase transitions is observed. The magnitude of the increase for the intermediate-to-ferroelectric nematic (NX-NF) transition is an order of magnitude smaller than the isotropic-nematic (I-N) transition. We then probe potential consequences that may result from an elevated density through measurement of the refractive indices (no and ne). The navg of M5 is compared with 5CB and polar smectic liquid crystals. We observe how the highly polar nature of the system counteracts the effects of an increase in density. With knowledge of experimental density, we are able to derive an approximation that yields the polar order parameter, 〈P1〉, from polarisation measurements. Present results may be typical of ferroelectric nematic materials, potentially guiding material development, and is especially relevant for informing ongoing studies into this emerging class of materials.

SELECTION OF CITATIONS
SEARCH DETAIL