Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 100: 129629, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38295907

ABSTRACT

Modulators of orexin receptors are being developed for neurological illnesses such as sleep disorders, addictive behaviours and other psychiatric diseases. We herein describe the discovery of CVN766, a potent orexin 1 receptor antagonist that has greater than 1000-fold selectivity for the orexin 1 receptor over the orexin 2 receptor and demonstrates low off target hits in a diversity screen. In agreement with its in vitro ADME data, CVN766 demonstrated moderate in vivo clearance in rodents and displayed good brain permeability and target occupancy. This drug candidate is currently being investigated in clinical trials for schizophrenia and related psychiatric conditions.


Subject(s)
Disclosure , Mental Disorders , Humans , Orexins , Orexin Receptor Antagonists/pharmacology , Orexin Receptors
3.
Nat Metab ; 4(11): 1495-1513, 2022 11.
Article in English | MEDLINE | ID: mdl-36411386

ABSTRACT

Food intake and body weight are tightly regulated by neurons within specific brain regions, including the brainstem, where acute activation of dorsal raphe nucleus (DRN) glutamatergic neurons expressing the glutamate transporter Vglut3 (DRNVglut3) drive a robust suppression of food intake and enhance locomotion. Activating Vglut3 neurons in DRN suppresses food intake and increases locomotion, suggesting that modulating the activity of these neurons might alter body weight. Here, we show that DRNVglut3 neurons project to the lateral hypothalamus (LHA), a canonical feeding center that also reduces food intake. Moreover, chronic DRNVglut3 activation reduces weight in both leptin-deficient (ob/ob) and leptin-resistant diet-induced obese (DIO) male mice. Molecular profiling revealed that the orexin 1 receptor (Hcrtr1) is highly enriched in DRN Vglut3 neurons, with limited expression elsewhere in the brain. Finally, an orally bioavailable, highly selective Hcrtr1 antagonist (CVN45502) significantly reduces feeding and body weight in DIO. Hcrtr1 is also co-expressed with Vglut3 in the human DRN, suggesting that there might be a similar effect in human. These results identify a potential therapy for obesity by targeting DRNVglut3 neurons while also establishing a general strategy for developing drugs for central nervous system disorders.


Subject(s)
Brain Stem , Leptin , Neurons , Weight Loss , Animals , Humans , Male , Mice , Brain Stem/metabolism , Leptin/metabolism , Mice, Obese , Neurons/metabolism , Obesity/drug therapy , Obesity/metabolism , Orexin Receptors/metabolism
4.
Bioorg Med Chem Lett ; 21(21): 6249-52, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21940167

ABSTRACT

A library of chemokine antagonists has been synthesized using a combination of solid and solution-phase chemistry. Structures of known chemokine antagonists were used to produce a pharmacophore which served to guide monomer selection. Several combinations of monomers have resulted in providing novel chemokine antagonists which in some cases display dual chemokine receptor antagonism.


Subject(s)
Chemokines/antagonists & inhibitors , Drug Design , Small Molecule Libraries , Animals , Cell Line , Cricetinae , Cricetulus
5.
Plant Physiol ; 147(4): 1858-73, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18567827

ABSTRACT

In this study we analyzed transcript abundance and promoters of genes encoding mitochondrial proteins to identify signaling pathways that regulate stress-induced gene expression. We used Arabidopsis (Arabidopsis thaliana) alternative oxidase AOX1a, external NADP H-dehydrogenase NDB2, and two additional highly stress-responsive genes, At2g21640 and BCS1. As a starting point, the promoter region of AOX1a was analyzed and functional analysis identified 10 cis-acting regulatory elements (CAREs), which played a role in response to treatment with H(2)O(2), rotenone, or both. Six of these elements were also functional in the NDB2 promoter. The promoter region of At2g21640, previously defined as a hallmark of oxidative stress, shared two functional CAREs with AOX1a and was responsive to treatment with H(2)O(2) but not rotenone. Microarray analysis further supported that signaling pathways induced by H(2)O(2) and rotenone are not identical. The promoter of BCS1 was not responsive to H(2)O(2) or rotenone, but highly responsive to salicylic acid (SA), whereas the promoters of AOX1a and NDB2 were unresponsive to SA. Analysis of transcript abundance of these genes in a variety of defense signaling mutants confirmed that BCS1 expression is regulated in a different manner compared to AOX1a, NDB2, and At2g21640. These mutants also revealed a pathway associated with programmed cell death that regulated AOX1a in a manner distinct from the other genes. Thus, at least three distinctive pathways regulate mitochondrial stress response at a transcriptional level, an SA-dependent pathway represented by BCS1, a second pathway that represents a convergence point for signals generated by H(2)O(2) and rotenone on multiple CAREs, some of which are shared between responsive genes, and a third pathway that acts via EDS1 and PAD4 regulating only AOX1a. Furthermore, posttranscriptional regulation accounts for changes in transcript abundance by SA treatment for some genes.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Mitochondrial Proteins/genetics , Promoter Regions, Genetic , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cells, Cultured , Hydrogen Peroxide/pharmacology , Mitochondrial Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Oxidoreductases/chemistry , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plant Proteins , RNA, Messenger/metabolism , Rotenone/pharmacology , Signal Transduction/drug effects , Uncoupling Agents/pharmacology
7.
Bioorg Med Chem Lett ; 12(18): 2587-90, 2002 Sep 16.
Article in English | MEDLINE | ID: mdl-12182866

ABSTRACT

In clinical studies, several inhibitors of phosphodiesterase 5 (PDE5) have demonstrated utility in the treatment of erectile dysfunction. We describe herein a series of 8-aryl xanthine derivatives which function as potent PDE5 inhibitors with, in many cases, high levels of selectivity versus other PDE isoforms.


Subject(s)
Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/drug effects , Xanthines/pharmacology , Models, Molecular , Molecular Structure , Phosphodiesterase Inhibitors/chemistry , Xanthines/chemistry
8.
Bioorg Med Chem Lett ; 12(15): 1973-6, 2002 Aug 05.
Article in English | MEDLINE | ID: mdl-12113821

ABSTRACT

PDE5 inhibitors based upon the xanthine scaffold 8 have been expediently synthesized using a solid-phase route. Attachment of the xanthine scaffold 8 using the Rink chloride linker 4 and N-1 functionalization using Mitsunobu chemistry is described. A library of compounds was produced in multi-milligram quantities with excellent purities and acceptable yields. The compounds were tested for their PDE5 inhibitory activity.


Subject(s)
Phosphodiesterase Inhibitors/chemical synthesis , Phosphoric Diester Hydrolases/metabolism , Xanthine/chemistry , 3',5'-Cyclic-GMP Phosphodiesterases , Combinatorial Chemistry Techniques , Cyclic Nucleotide Phosphodiesterases, Type 5 , Databases, Factual , Indicators and Reagents/chemistry , Nuclear Magnetic Resonance, Biomolecular , Phosphodiesterase Inhibitors/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...