Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters











Publication year range
1.
Nat Rev Drug Discov ; 17(9): 688, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30116046

ABSTRACT

This corrects the article DOI: 10.1038/nrd.2018.97.

2.
Front Physiol ; 9: 803, 2018.
Article in English | MEDLINE | ID: mdl-30022951

ABSTRACT

Targeting the mitochondrial enzyme FoF1-ATP synthase and modulating its catalytic activities with small molecules is a promising new approach for treatment of autoimmune diseases. The immunomodulatory compound Bz-423 is such a drug that binds to subunit OSCP of the mitochondrial FoF1-ATP synthase and induces apoptosis via increased reactive oxygen production in coupled, actively respiring mitochondria. Here, we review the experimental progress to reveal the binding of Bz-423 to the mitochondrial target and discuss how subunit rotation of FoF1-ATP synthase is affected by Bz-423. Briefly, we report how Förster resonance energy transfer can be employed to colocalize the enzyme and the fluorescently tagged Bz-423 within the mitochondria of living cells with nanometer resolution.

3.
Nat Rev Drug Discov ; 17(8): 588-606, 2018 08.
Article in English | MEDLINE | ID: mdl-30026524

ABSTRACT

Danger signals are a hallmark of many common inflammatory diseases, and these stimuli can function to activate the cytosolic innate immune signalling receptor NLRP3 (NOD-, LRR- and pyrin domain-containing 3). Once activated, NLRP3 nucleates the assembly of an inflammasome, leading to caspase 1-mediated proteolytic activation of the interleukin-1ß (IL-1ß) family of cytokines, and induces an inflammatory, pyroptotic cell death. Pharmacological inhibition of NLRP3 activation results in potent therapeutic effects in a wide variety of rodent models of inflammatory diseases, effects that are mirrored by genetic ablation of NLRP3. Although these findings highlight the potential of NLRP3 as a drug target, an understanding of NLRP3 structure and activation mechanisms is incomplete, which has hampered the discovery and development of novel therapeutics against this target. Here, we review recent advances in our understanding of NLRP3 activation and regulation, highlight the evolving landscape of NLRP3 modulators and discuss opportunities for pharmacologically targeting NLRP3 with novel small molecules.

4.
J Immunol ; 198(7): 2735-2746, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28242647

ABSTRACT

Integration of signaling and metabolic pathways enables and sustains lymphocyte function. Whereas metabolic changes occurring during T cell activation are well characterized, the metabolic demands of differentiated T lymphocytes are largely unexplored. In this study, we defined the bioenergetics of Th17 effector cells generated in vivo. These cells depend on oxidative phosphorylation (OXPHOS) for energy and cytokine production. Mechanistically, the essential role of OXPHOS in Th17 cells results from their limited capacity to increase glycolysis in response to metabolic stresses. This metabolic program is observed in mouse and human Th17 cells, including those isolated from Crohn disease patients, and it is linked to disease, as inhibiting OXPHOS reduces the severity of murine colitis and psoriasis. These studies highlight the importance of analyzing metabolism in effector lymphocytes within in vivo inflammatory contexts and suggest a therapeutic role for manipulating OXPHOS in Th17-driven diseases.


Subject(s)
Cell Differentiation/immunology , Colitis/immunology , Lymphocyte Activation/immunology , Oxidative Phosphorylation , Th17 Cells/immunology , Animals , Cell Separation , Disease Models, Animal , Gene Expression Profiling , Humans , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Transcriptome
6.
Oncoimmunology ; 5(12): e1254854, 2016.
Article in English | MEDLINE | ID: mdl-28123897

ABSTRACT

RORγt is the key transcription factor controlling the development and function of CD4+ Th17 and CD8+ Tc17 cells. Across a range of human tumors, about 15% of the CD4+ T cell fraction in tumor-infiltrating lymphocytes are RORγ+ cells. To evaluate the role of RORγ in antitumor immunity, we have identified synthetic, small molecule agonists that selectively activate RORγ to a greater extent than the endogenous agonist desmosterol. These RORγ agonists enhance effector function of Type 17 cells by increasing the production of cytokines/chemokines such as IL-17A and GM-CSF, augmenting expression of co-stimulatory receptors like CD137, CD226, and improving survival and cytotoxic activity. RORγ agonists also attenuate immunosuppressive mechanisms by curtailing Treg formation, diminishing CD39 and CD73 expression, and decreasing levels of co-inhibitory receptors including PD-1 and TIGIT on tumor-reactive lymphocytes. The effects of RORγ agonists were not observed in RORγ-/- T cells, underscoring the selective on-target activity of the compounds. In vitro treatment of tumor-specific T cells with RORγ agonists, followed by adoptive transfer to tumor-bearing mice is highly effective at controlling tumor growth while improving T cell survival and maintaining enhanced IL-17A and reduced PD-1 in vivo. The in vitro effects of RORγ agonists translate into single agent, immune system-dependent, antitumor efficacy when compounds are administered orally in syngeneic tumor models. RORγ agonists integrate multiple antitumor mechanisms into a single therapeutic that both increases immune activation and decreases immune suppression resulting in robust inhibition of tumor growth. Thus, RORγ agonists represent a novel immunotherapy approach for cancer.

8.
J Immunol ; 194(12): 5789-800, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25972478

ABSTRACT

The coinhibitory receptor programmed death-1 (PD-1) maintains immune homeostasis by negatively regulating T cell function and survival. Blockade of PD-1 increases the severity of graft-versus-host disease (GVHD), but the interplay between PD-1 inhibition and T cell metabolism is not well studied. We found that both murine and human alloreactive T cells concomitantly upregulated PD-1 expression and increased levels of reactive oxygen species (ROS) following allogeneic bone marrow transplantation. This PD-1(Hi)ROS(Hi) phenotype was specific to alloreactive T cells and was not observed in syngeneic T cells during homeostatic proliferation. Blockade of PD-1 signaling decreased both mitochondrial H2O2 and total cellular ROS levels, and PD-1-driven increases in ROS were dependent upon the oxidation of fatty acids, because treatment with etomoxir nullified changes in ROS levels following PD-1 blockade. Downstream of PD-1, elevated ROS levels impaired T cell survival in a process reversed by antioxidants. Furthermore, PD-1-driven changes in ROS were fundamental to establishing a cell's susceptibility to subsequent metabolic inhibition, because blockade of PD-1 decreased the efficacy of later F1F0-ATP synthase modulation. These data indicate that PD-1 facilitates apoptosis in alloreactive T cells by increasing ROS in a process dependent upon the oxidation of fat. In addition, blockade of PD-1 undermines the potential for subsequent metabolic inhibition, an important consideration given the increasing use of anti-PD-1 therapies in the clinic.


Subject(s)
Cell Survival , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Antigens/immunology , Apoptosis/genetics , Apoptosis/immunology , Bone Marrow Transplantation/adverse effects , Cell Survival/genetics , Fatty Acids/metabolism , Female , Gene Expression , Graft vs Host Disease/etiology , Heterografts , Humans , Mice , Mice, Transgenic , Oxidation-Reduction , Phenotype , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Reactive Oxygen Species/metabolism
9.
Biochim Biophys Acta ; 1847(11): 1469-78, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25979236

ABSTRACT

Mitochondria are multifunctional organelles that play a central role in cellular homeostasis. Severe mitochondrial dysfunction leads to life-threatening diseases in humans and accelerates the aging process. Surprisingly, moderate reduction of mitochondrial function in different species has anti-aging effects. High-throughput screenings in the nematode Caenorhabditis elegans lead to the identification of several pro-longevity genetic and pharmacological interventions. Large-scale screens, however, are manual, subjective, time consuming and costly. These limitations could be reduced by the identification of automatically quantifiable biomarkers of healthy aging. In this study we exploit the distinct and reproducible phenotypes described in C. elegans upon different levels of mitochondrial alteration to develop an automated high-content strategy to identify new potential pro-longevity interventions. Utilizing the microscopy platform Cellomics ArrayScan Reader, we optimize a workflow to automatically and reliably quantify the discrete phenotypic readouts associated with different degrees of silencing of mitochondrial respiratory chain regulatory proteins, and validate the approach with mitochondrial-targeting drugs known to extend lifespan in C. elegans. Finally, we report that a new mitochondrial ATPase modulator matches our screening phenotypic criteria and extends nematode's lifespan thus providing the proof of principle that our strategy could be exploited to identify novel mitochondrial-targeted drugs with pro-longevity activity. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.


Subject(s)
Caenorhabditis elegans/physiology , Longevity , Mitochondria/physiology , Animals , Microscopy , Mitochondria/drug effects , Phenotype
10.
J Biol Chem ; 290(8): 4537-4544, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25550160

ABSTRACT

Mitochondria of Drosophila melanogaster undergo Ca(2+)-induced Ca(2+) release through a putative channel (mCrC) that has several regulatory features of the permeability transition pore (PTP). The PTP is an inner membrane channel that forms from F-ATPase, possessing a conductance of 500 picosiemens (pS) in mammals and of 300 pS in yeast. In contrast to the PTP, the mCrC of Drosophila is not permeable to sucrose and appears to be selective for Ca(2+) and H(+). We show (i) that like the PTP, the mCrC is affected by the sense of rotation of F-ATPase, by Bz-423, and by Mg(2+)/ADP; (ii) that expression of human cyclophilin D in mitochondria of Drosophila S2R(+) cells sensitizes the mCrC to Ca(2+) but does not increase its apparent size; and (iii) that purified dimers of D. melanogaster F-ATPase reconstituted into lipid bilayers form 53-pS channels activated by Ca(2+) and thiol oxidants and inhibited by Mg(2+)/γ-imino ATP. These findings indicate that the mCrC is the PTP of D. melanogaster and that the signature conductance of F-ATPase channels depends on unique structural features that may underscore specific roles in different species.


Subject(s)
Adenosine Triphosphatases/metabolism , Calcium Channels/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Drosophila Proteins/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Adenosine Triphosphatases/genetics , Animals , Calcium Channels/genetics , Cell Line , Drosophila Proteins/genetics , Drosophila melanogaster , Humans , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Permeability Transition Pore
11.
Nat Chem Biol ; 11(2): 141-7, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25558972

ABSTRACT

Retinoic acid receptor-related orphan receptor γ (RORγt) controls the differentiation of naive CD4(+) T cells into the TH17 lineage, which are critical cells in the pathogenesis of autoimmune diseases. Here we report that during TH17 differentiation, cholesterol biosynthesis and uptake programs are induced, whereas their metabolism and efflux programs are suppressed. These changes result in the accumulation of the cholesterol precursor, desmosterol, which functions as a potent endogenous RORγ agonist. Generation of cholesterol precursors is essential for TH17 differentiation as blocking cholesterol synthesis with chemical inhibitors at steps before the formation of active precursors reduces differentiation. Upon activation, metabolic changes also lead to production of specific sterol-sulfate conjugates that favor activation of RORγ over the TH17-inhibiting sterol receptor LXR. Thus, TH17 differentiation is orchestrated by coordinated sterol synthesis, mobilization and metabolism to selectively activate RORγ.


Subject(s)
Cell Differentiation/physiology , Cholesterol/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Th17 Cells/cytology , Animals , CD4-Positive T-Lymphocytes/cytology , Cell Lineage , Cholesterol/biosynthesis , Cholesterol/chemistry , Desmosterol/analogs & derivatives , Desmosterol/chemistry , Desmosterol/metabolism , Interleukin-17/biosynthesis , Mice, Inbred BALB C , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Sf9 Cells , Spodoptera
12.
J Pharmacol Exp Ther ; 351(2): 298-307, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25125579

ABSTRACT

T-cell activation requires increased ATP and biosynthesis to support proliferation and effector function. Most models of T-cell activation are based on in vitro culture systems and posit that aerobic glycolysis is employed to meet increased energetic and biosynthetic demands. By contrast, T cells activated in vivo by alloantigens in graft-versus-host disease (GVHD) increase mitochondrial oxygen consumption, fatty acid uptake, and oxidation, with small increases of glucose uptake and aerobic glycolysis. Here we show that these differences are not a consequence of alloactivation, because T cells activated in vitro either in a mixed lymphocyte reaction to the same alloantigens used in vivo or with agonistic anti-CD3/anti-CD28 antibodies increased aerobic glycolysis. Using targeted metabolic (13)C tracer fate associations, we elucidated the metabolic pathway(s) employed by alloreactive T cells in vivo that support this phenotype. We find that glutamine (Gln)-dependent tricarboxylic acid cycle anaplerosis is increased in alloreactive T cells and that Gln carbon contributes to ribose biosynthesis. Pharmacological modulation of oxidative phosphorylation rapidly reduces anaplerosis in alloreactive T cells and improves GVHD. On the basis of these data, we propose a model of T-cell metabolism that is relevant to activated lymphocytes in vivo, with implications for the discovery of new drugs for immune disorders.


Subject(s)
Graft vs Host Disease/immunology , Isoantigens/immunology , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , CD28 Antigens/immunology , CD3 Complex/immunology , Citric Acid Cycle/immunology , Female , Glutamine/metabolism , Glycolysis/immunology , Graft vs Host Disease/metabolism , Mice , Oxidative Phosphorylation , Ribose/biosynthesis
13.
Int J Mol Sci ; 15(5): 7513-36, 2014 Apr 30.
Article in English | MEDLINE | ID: mdl-24786291

ABSTRACT

The oligomycin-sensitivity conferring protein (OSCP) of the mitochondrial F(O)F1 ATP synthase has long been recognized to be essential for the coupling of proton transport to ATP synthesis. Located on top of the catalytic F1 sector, it makes stable contacts with both F1 and the peripheral stalk, ensuring the structural and functional coupling between F(O) and F1, which is disrupted by the antibiotic, oligomycin. Recent data have established that OSCP is the binding target of cyclophilin (CyP) D, a well-characterized inducer of the mitochondrial permeability transition pore (PTP), whose opening can precipitate cell death. CyPD binding affects ATP synthase activity, and most importantly, it decreases the threshold matrix Ca²âº required for PTP opening, in striking analogy with benzodiazepine 423, an apoptosis-inducing agent that also binds OSCP. These findings are consistent with the demonstration that dimers of ATP synthase generate Ca²âº-dependent currents with features indistinguishable from those of the PTP and suggest that ATP synthase is directly involved in PTP formation, although the underlying mechanism remains to be established. In this scenario, OSCP appears to play a fundamental role, sensing the signal(s) that switches the enzyme of life in a channel able to precipitate cell death.


Subject(s)
Adenosine Triphosphatases/metabolism , Carrier Proteins/metabolism , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Adenosine Triphosphatases/analysis , Animals , Carrier Proteins/analysis , Peptidyl-Prolyl Isomerase F , Cyclophilins/metabolism , Humans , Membrane Proteins/analysis , Mitochondria/pathology , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Mitochondrial Proton-Translocating ATPases/analysis , Models, Molecular , Protein Conformation , Protein Processing, Post-Translational
14.
Blood ; 122(18): 3230-7, 2013 Oct 31.
Article in English | MEDLINE | ID: mdl-24046012

ABSTRACT

Activated T cells require increased energy to proliferate and mediate effector functions, but the metabolic changes that occur in T cells following stimulation in vivo are poorly understood, particularly in the context of inflammation. We have previously shown that T cells activated during graft-versus-host disease (GVHD) primarily rely on oxidative phosphorylation to synthesize adenosine 5'-triphosphate. Here, we demonstrate that alloreactive effector T cells (Teff) use fatty acids (FAs) as a fuel source to support their in vivo activation. Alloreactive T cells increased FA transport, elevated levels of FA oxidation enzymes, up-regulated transcriptional coactivators to drive oxidative metabolism, and increased their rates of FA oxidation. Importantly, increases in FA transport and up-regulation of FA oxidation machinery occurred specifically in T cells during GVHD and were not seen in Teff following acute activation. Pharmacological blockade of FA oxidation decreased the survival of alloreactive T cells but did not influence the survival of T cells during normal immune reconstitution. These studies suggest that pathways controlling FA metabolism might serve as therapeutic targets to treat GVHD and other T-cell-mediated immune diseases.


Subject(s)
Fatty Acids/immunology , Graft vs Host Disease/immunology , Lymphocyte Activation/immunology , T-Lymphocyte Subsets/immunology , Animals , Blotting, Western , Bone Marrow Transplantation/methods , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/immunology , Carnitine O-Palmitoyltransferase/metabolism , Enzyme Inhibitors/pharmacology , Epoxy Compounds/pharmacology , Fatty Acids/metabolism , Female , Flow Cytometry , Graft vs Host Disease/metabolism , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred DBA , Oxidation-Reduction , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/metabolism , Transcription Factors/immunology , Transcription Factors/metabolism , Transplantation, Homologous
15.
Proc Natl Acad Sci U S A ; 110(15): 5887-92, 2013 Apr 09.
Article in English | MEDLINE | ID: mdl-23530243

ABSTRACT

Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the FOF1 ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring protein subunit of the enzyme at the same site as the ATP synthase inhibitor benzodiazepine 423 (Bz-423), that Bz-423 sensitizes the PTP to Ca(2+) like CyPD itself, and that decreasing oligomycin sensitivity-conferring protein expression by RNAi increases the sensitivity of the PTP to Ca(2+). Purified dimers of the ATP synthase, which did not contain voltage-dependent anion channel or adenine nucleotide translocator, were reconstituted into lipid bilayers. In the presence of Ca(2+), addition of Bz-423 triggered opening of a channel with currents that were typical of the mitochondrial megachannel, which is the PTP electrophysiological equivalent. Channel openings were inhibited by the ATP synthase inhibitor AMP-PNP (γ-imino ATP, a nonhydrolyzable ATP analog) and Mg(2+)/ADP. These results indicate that the PTP forms from dimers of the ATP synthase.


Subject(s)
Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/physiology , Mitochondrial Proton-Translocating ATPases/metabolism , Animals , Apoptosis , Calcium/metabolism , Cattle , Cell Line, Tumor , Dimerization , Humans , Hydrolysis , Membrane Potentials , Mice , Mitochondria, Liver/metabolism , Mitochondrial Permeability Transition Pore , RNA, Small Interfering/metabolism , Transfection
16.
Immunol Rev ; 249(1): 104-15, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22889218

ABSTRACT

For several decades, it has been known that T-cell activation in vitro leads to increased glycolytic metabolism that fuels proliferation and effector function. Recently, this simple model has been complicated by the observation that different T-cell subsets differentially regulate fundamental metabolic pathways under the control of distinct molecular regulators. Although the majority of these data have been generated in vitro, several recent studies have documented the metabolism of T cells activated in vivo. Here, we review the recent data surrounding the differential regulation of metabolism by distinct T-cell subsets in vitro and in vivo and discuss how differential metabolic regulation might facilitate T-cell function vis-à-vis proliferation, survival, and energy production. We further discuss the important therapeutic implications of differential metabolism across T-cell subsets and review recent successes in exploiting lymphocyte metabolism to treat immune-mediated diseases.


Subject(s)
Immunomodulation , Lymphocyte Activation , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , Cell Differentiation , Cell Proliferation , Energy Metabolism , Glycolysis , Humans , Mitochondria/metabolism , Oxidative Phosphorylation , Reactive Oxygen Species/metabolism
17.
PLoS One ; 6(5): e20107, 2011.
Article in English | MEDLINE | ID: mdl-21611151

ABSTRACT

BACKGROUND: Cellular metabolism plays a critical role in regulating T cell responses and the development of memory T cells with long-term protections. However, the metabolic phenotype of antigen-activated T cells that are responsible for the generation of long-lived memory cells has not been characterized. DESIGN AND METHODS: Using lymphocytic choriomeningitis virus (LCMV) peptide gp33-specific CD8(+) T cells derived from T cell receptor transgenic mice, we characterized the metabolic phenotype of proliferating T cells that were activated and expanded in vitro in the presence or absence of rapamycin, and determined the capability of these rapamycin-treated T cells to generate long-lived memory cells in vivo. RESULTS: Antigen-activated CD8(+) T cells treated with rapamycin gave rise to 5-fold more long-lived memory T cells in vivo than untreated control T cells. In contrast to that control T cells only increased glycolysis, rapamycin-treated T cells upregulated both glycolysis and oxidative phosphorylation (OXPHOS). These rapamycin-treated T cells had greater ability than control T cells to survive withdrawal of either glucose or growth factors. Inhibition of OXPHOS by oligomycin significantly reduced the ability of rapamycin-treated T cells to survive growth factor withdrawal. This effect of OXPHOS inhibition was accompanied with mitochondrial hyperpolarization and elevation of reactive oxygen species that are known to be toxic to cells. CONCLUSIONS: Our findings indicate that these rapamycin-treated T cells may represent a unique cell model for identifying nutrients and signals critical to regulating metabolism in both effector and memory T cells, and for the development of new methods to improve the efficacy of adoptive T cell cancer therapy.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Immunologic Memory/drug effects , Sirolimus/pharmacology , Animals , CD8-Positive T-Lymphocytes/drug effects , Cell Survival/drug effects , Glucose/deficiency , Glucose/pharmacology , Glycolysis/drug effects , Intercellular Signaling Peptides and Proteins/deficiency , Intercellular Signaling Peptides and Proteins/pharmacology , Interleukin-2/deficiency , Interleukin-2/pharmacology , Membrane Potential, Mitochondrial/drug effects , Mice , Oligomycins/pharmacology , Oxidative Phosphorylation/drug effects , Phenotype , Reactive Oxygen Species/metabolism
18.
Sci Transl Med ; 3(67): 67ra8, 2011 Jan 26.
Article in English | MEDLINE | ID: mdl-21270339

ABSTRACT

Cells generate adenosine triphosphate (ATP) by glycolysis and by oxidative phosphorylation (OXPHOS). Despite the importance of having sufficient ATP available for the energy-dependent processes involved in immune activation, little is known about the metabolic adaptations that occur in vivo to meet the increased demand for ATP in activated and proliferating lymphocytes. We found that bone marrow (BM) cells proliferating after BM transplantation (BMT) increased aerobic glycolysis but not OXPHOS, whereas T cells proliferating in response to alloantigens during graft-versus-host disease (GVHD) increased both aerobic glycolysis and OXPHOS. Metabolomic analysis of alloreactive T cells showed an accumulation of acylcarnitines consistent with changes in fatty acid oxidation. Alloreactive T cells also exhibited a hyperpolarized mitochondrial membrane potential (ΔΨm), increased superoxide production, and decreased amounts of antioxidants, whereas proliferating BM cells did not. Bz-423, a small-molecule inhibitor of the mitochondrial F(1)F(0) adenosine triphosphate synthase (F(1)F(0)-ATPase), selectively increased superoxide and induced the apoptosis of alloreactive T cells, which arrested established GVHD in several BMT models without affecting hematopoietic engraftment or lymphocyte reconstitution. These findings challenge the current paradigm that activated T cells meet their increased demands for ATP through aerobic glycolysis, and identify the possibility that bioenergetic and redox characteristics can be selectively exploited as a therapeutic strategy for immune disorders.


Subject(s)
Apoptosis/immunology , Graft vs Host Disease/immunology , Isoantigens/immunology , Oxidative Phosphorylation , T-Lymphocytes/metabolism , Animals , Apoptosis/drug effects , Benzodiazepines/pharmacology , Benzodiazepines/therapeutic use , Bone Marrow Cells/metabolism , Bone Marrow Transplantation/immunology , Female , Graft vs Host Disease/drug therapy , Lactates/metabolism , Lymphocyte Activation , Metabolome , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mitochondrial Proton-Translocating ATPases/antagonists & inhibitors , Mitochondrial Proton-Translocating ATPases/metabolism , Oxygen Consumption , Reactive Oxygen Species/metabolism , T-Lymphocytes/drug effects
19.
Biopolymers ; 93(1): 85-92, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19768783

ABSTRACT

Bz-423 is an inhibitor of the mitochondrial F(1)F(0)-ATPase, with therapeutic properties in murine models of immune diseases. Here, we study the binding of a water-soluble Bz-423 analog (5-(3-(aminomethyl)phenyl)-7-chloro- 1-methyl-3-(naphthalen-2-ylmethyl)-1H-benzo][e][1,4]diazepin-2(3H)-one); (1) to its target subunit on the enzyme, the oligomycin sensitivity conferring protein (OSCP), by NMR spectroscopy using chemical shift perturbation and cross-relaxation experiments. Titration experiments with constructs representing residues 1-120 or 1-145 of the OSCP reveals that (a) 1 binds to a region of the protein, at the minimum, comprising residues M51, L56, K65, V66, K75, K77, and N92, and (b) binding of 1 induces conformational changes in the OSCP. Control experiments employing a variant of 1 in which a key binding element on the small molecule was deleted; it had no perturbational effect on the spectra of the OSCP, which indicates that the observed changes with 1 represent specific binding interactions. Collectively, these data suggest that 1 might inhibit the enzyme through an allosteric mechanism where binding results in conformational changes that perturb the OSCP-F(1) interface resulting in disrupted communication between the peripheral stalk and the F(1)-domain of the enzyme.


Subject(s)
Benzodiazepines/chemistry , Benzodiazepines/metabolism , Immunologic Factors/chemistry , Immunologic Factors/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Models, Molecular , Binding Sites , Drug Delivery Systems , Magnetic Resonance Spectroscopy , Mitochondria/enzymology , Molecular Structure
20.
EMBO J ; 28(18): 2689-96, 2009 Sep 16.
Article in English | MEDLINE | ID: mdl-19644443

ABSTRACT

Synthesis of adenosine triphosphate ATP, the 'biological energy currency', is accomplished by F(o)F(1)-ATP synthase. In the plasma membrane of Escherichia coli, proton-driven rotation of a ring of 10 c subunits in the F(o) motor powers catalysis in the F(1) motor. Although F(1) uses 120 degrees stepping during ATP synthesis, models of F(o) predict either an incremental rotation of c subunits in 36 degrees steps or larger step sizes comprising several fast substeps. Using single-molecule fluorescence resonance energy transfer, we provide the first experimental determination of a 36 degrees sequential stepping mode of the c-ring during ATP synthesis.


Subject(s)
Proton-Translocating ATPases/physiology , Adenosine Triphosphate/metabolism , Biophysics/methods , Catalysis , Escherichia coli/enzymology , Fluorescence Resonance Energy Transfer/methods , Lipid Bilayers/chemistry , Models, Biological , Monte Carlo Method , Mutation , Photons , Plasmids/metabolism , Protein Conformation , Proton-Translocating ATPases/metabolism , Protons , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL