Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Cardiovasc Magn Reson ; 25(1): 57, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37821911

ABSTRACT

BACKGROUND: Longer pulmonary transit time (PTT) is closely associated with hemodynamic abnormalities. However, the implications on heart failure (HF) risk have not been investigated broadly in patients with diverse cardiac conditions. In this study we examined the long-term risk of HF hospitalization associated with longer PTT in a large prospective cohort with a broad spectrum of cardiac conditions. METHODS: All subjects were prospectively recruited to undergo cardiac magnetic resonance (CMR). The dynamic images of first-pass perfusion were acquired to assess peak-to-peak pulmonary transit time (PTT) which was subsequently normalized to RR interval duration. The risk of HF was examined using Cox proportional hazards models adjusted for baseline confounding risk factors. RESULTS: Among 506 consecutively consented patients undergoing clinical cardiac MR with diverse cardiac conditions, the mean age was 63 ± 14 years and 373 (73%) were male. After a mean follow up duration of 4.5 ± 3.0 years, 70 (14%) patients developed hospitalized HF and of these 6 died. A normalized PTT ≥ 8.2 was associated with a significantly increased adjusted HF hazard ratio of 3.69 (95% CI 2.02, 6.73). The HF hazard ratio was 1.26 (95% CI 1.18, 1.33) for each 1 unit increase in PTT which was higher among those preserved (1.70, 95% CI 1.20, 2.41) compared to those with reduced left ventricular ejection fraction (< 50%) (1.18, 95% CI 1.09, 1.27). PTT remained a significant risk factor of hospitalized HF after additional adjustment for N-terminal pro-hormone brain natriuretic peptide (NT-proBNP) or left ventricular global longitudinal strain with additionally demonstrated incremental model improvement through likelihood ratio testing. CONCLUSIONS: Our findings support the role of PTT in assessing HF risk among patients with broad spectrum of cardiac conditions with reduced as well as preserved ejection fraction. Longer PTT duration is an incremental risk factor for HF when baseline global longitudinal strain and NT-proBNP are taken into consideration.


Subject(s)
Heart Failure , Ventricular Function, Left , Humans , Male , Middle Aged , Aged , Female , Stroke Volume , Prospective Studies , Predictive Value of Tests , Heart Failure/diagnostic imaging , Magnetic Resonance Spectroscopy , Hospitalization , Natriuretic Peptide, Brain , Peptide Fragments , Prognosis , Biomarkers
2.
Diagnostics (Basel) ; 12(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36552955

ABSTRACT

Volumetric measurements with cardiac magnetic resonance imaging (MRI) are effective for evaluating heart failure (HF) with systolic dysfunction that typically induces a lower ejection fraction (EF) than normal (<50%) while they are not sensitive to diastolic dysfunction in HF patients with preserved EF (≥50%). This work is to investigate whether HF evaluation with cardiac MRI can be improved with real-time MRI feature tracking. In a cardiac MRI study, we recruited 16 healthy volunteers, 8 HF patients with EF < 50% and 10 HF patients with preserved EF. Using real-time feature tracking, a cardiac MRI index, torsion correlation, was calculated which evaluated the correlation of torsional and radial wall motion in the left ventricle (LV) over a series of sequential cardiac cycles. The HF patients with preserved EF and the healthy volunteers presented significant difference in torsion correlation (one-way ANOVA, p < 0.001). In the scatter plots of EF against torsion correlation, the HF patients with EF < 50%, the HF patients with preserved EF and the healthy volunteers were well differentiated, indicating that real-time MRI feature tracking provided LV function assessment complementary to volumetric measurements. This study demonstrated the potential of cardiac MRI for evaluating both systolic and diastolic dysfunction in HF patients.

3.
Sci Rep ; 12(1): 4070, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260729

ABSTRACT

Cardiac magnetic resonance imaging (MRI) has been largely dependent on retrospective cine for data acquisition. Real-time imaging, although inferior in image quality to retrospective cine, is more informative about motion dynamics. We herein developed a real-time cardiac MRI approach to temporospatial characterization of left ventricle (LV) and right ventricle (RV) wall motion. This approach provided two temporospatial indices, temporal periodicity and spatial coherence, for quantitative assessment of ventricular function. In a cardiac MRI study, we prospectively investigated temporospatial characterization in reference to standard volumetric measurements with retrospective cine. The temporospatial indices were found to be effective for evaluating the difference of ventricular performance between the healthy volunteers and the heart failure (HF) patients (LV temporal periodicity 0.24 ± 0.037 vs. 0.14 ± 0.021; RV temporal periodicity 0.18 ± 0.030 vs. 0.10 ± 0.014; LV spatial coherence 0.52 ± 0.039 vs. 0.38 ± 0.040; RV spatial coherence 0.50 ± 0.036 vs. 0.35 ± 0.035; all in arbitrary unit). The HF patients and healthy volunteers were well differentiated in the scatter plots of spatial coherence and temporal periodicity while they were mixed in those of end-systolic volume (ESV) and ejection fraction (EF) from volumetric measurements. This study demonstrated the potential of real-time cardiac MRI for intricate analysis of ventricular function beyond retrospective cine.


Subject(s)
Heart Failure , Heart Ventricles , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging, Cine/methods , Reproducibility of Results , Retrospective Studies , Stroke Volume , Ventricular Function, Left
4.
Ann Biomed Eng ; 50(2): 195-210, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35022866

ABSTRACT

In cardiology, magnetic resonance imaging (MRI) provides a clinical standard for measuring ventricular volumes. Owing to their reliability, volumetric measurements with cardiac MRI have become an essential tool for quantitative assessment of ventricular function. However, as volumetric indices are indirectly related to myocardial motion that drives ventricular filling and ejection, cardiac MRI cannot provide comprehensive evaluation of ventricular performance. To overcome this limitation, the presented work sought to measure ventricular wall motion directly with optical flow analysis of real-time cardiac MRI. By modeling left ventricle (LV) walls in real-time images based on myocardial architecture, we developed an optical flow approach to analyzing LV radial and circumferential wall motion for improved quantitative assessment of ventricular function. For proof-of-concept, a cardiac MRI study was conducted with healthy volunteers and heart failure (HF) patients. It was found that, as real-time images provided sufficient temporal information for correlation analysis between different LV wall motion velocity components, optical flow assessment detected the difference of ventricular performance between the HF patients and the healthy volunteers more effectively than volumetric measurements. We expect that this model-based optical flow assessment with real-time cardiac MRI would offer intricate analysis of ventricular function beyond conventional volumetric measurements.


Subject(s)
Heart Failure/diagnostic imaging , Heart Ventricles/diagnostic imaging , Magnetic Resonance Angiography/methods , Optical Imaging/methods , Adult , Aged , Case-Control Studies , Female , Heart Failure/physiopathology , Heart Ventricles/physiopathology , Humans , Male , Middle Aged , Reproducibility of Results , Stroke Volume , Ventricular Function, Left
6.
J Cardiovasc Magn Reson ; 23(1): 93, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34218790

ABSTRACT

BACKGROUND: Myocardial fibrosis and left ventricular (LV) longitudinal strain are independently associated with adverse clinical outcomes. However, the relationship between tissue properties and strain indices as well as their collective impact on outcomes are yet to be fully elucidated. We aim to investigate the relationship between LV global longitudinal strain (GLS), global circumferential strain (GCS) and global radial strain (GRS) with extracellular volume (ECV) and their collective impact. METHODS: Consecutive patients referred for clinical cardiovascular magnetic resonance (CMR) due to cardiomyopathy were prospectively enrolled. All patients underwent CMR with T1 mapping. ECV was calculated incorporating native and post-contrast T1 as well as hematocrit. LV GLS, GCS, and GRS were assessed by feature tracking. Hazard ratios and Kaplan-Meier curves were produced to assess the association between strains and T1 mapping indices with a composite outcome of all-cause mortality and hospitalized heart failure. RESULTS: The study consisted of 259 patients with mixed referring diagnoses of non-ischemic/ischemic cardiomyopathy and 21 normal controls. Decreased GLS, GCS and GRS were associated with increased ECV, increased native T1, and reduced post-contrast T1 in a dose dependent manner when T1 or ECV was in the abnormal range. After a mean follow-up of 31 ± 23 months, 41 events occurred including 37 heart failure admissions and 4 deaths. Kaplan-Meier plots demonstrated that reduced strains were associated with reduced event-free survival predominantly in patients with increased ECV (≥ 28.3%). The worst outcome was among those with both reduced strains and increased ECV. In the multivariable models, increased ECV, reduced post-contrast T1 and reduced strains in all 3 directions remained predictors of outcome risk, respectively. CONCLUSION: Our findings highlight the intrinsic link between altered CMR tissue properties and impaired myocardial mechanical performance and additionally demonstrate improved risk stratification by characterizing tissue property among patients with reduced strain.


Subject(s)
Magnetic Resonance Imaging, Cine , Ventricular Function, Left , Heart Ventricles/diagnostic imaging , Humans , Myocardium , Predictive Value of Tests
7.
Magn Reson Imaging ; 75: 89-99, 2021 01.
Article in English | MEDLINE | ID: mdl-33098934

ABSTRACT

Magnetic resonance imaging (MRI) can measure cardiac response to exercise stress for evaluating and managing heart patients in the practice of clinical cardiology. However, exercise stress cardiac MRI have been clinically limited by the ability of available MRI techniques to quantitatively measure fast and unstable cardiac dynamics during exercise. The presented work is to develop a new real-time MRI technique for improved quantitative performance of exercise stress cardiac MRI. This technique seeks to represent real-time cardiac images as a sparse Fourier-series along the time. With golden-angle radial acquisition, parallel imaging and compressed sensing can be integrated into a linear system of equations for resolving Fourier coefficients that are in turn used to generate real-time cardiac images from the Fourier-series representation. Fourier-series reconstruction from golden-angle radial data can effectively address data insufficiency due to MRI speed limitation, providing a real-time approach to exercise stress cardiac MRI. To demonstrate the feasibility, an exercise stress cardiac MRI experiment was run to investigate biventricular response to in-scanner biking exercise in a cohort of sixteen healthy volunteers. It was found that Fourier-series reconstruction from golden-angle radial data effectively detected exercise-induced increase in stroke volume and ejection fraction in a healthy heart. The presented work will improve the applications of exercise stress cardiac MRI in the practice of clinical cardiology.


Subject(s)
Exercise Test , Fourier Analysis , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Algorithms , Heart/diagnostic imaging , Heart/physiology , Humans , Stroke Volume
8.
Clin Cardiol ; 43(12): 1547-1554, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33280140

ABSTRACT

BACKGROUND: Cardiac injury is common in COVID-19 patients and is associated with increased mortality. However, it remains unclear if reduced cardiac function is associated with cardiac injury, and additionally if mortality risk is increased among those with reduced cardiac function in COVID-19 patients. HYPOTHESIS: The aim of this study was to assess cardiac function among COVID-19 patients with and without biomarkers of cardiac injury and to determine the mortality risk associated with reduced cardiac function. METHODS/RESULTS: This retrospective cohort study analyzed 143 consecutive COVID-19 patients who had an echocardiogram during hospitalization between March 1, 2020 and May 5, 2020. The mean age was 67 ± 16 years. Cardiac troponin-I was available in 131 patients and an increased value (>0.03 ng/dL) was found in 59 patients (45%). Reduced cardiac function, which included reduced left or right ventricular systolic function, was found in 40 patients (28%). Reduced cardiac function was found in 18% of patients without troponin-I elevation, 42% with mild troponin increase (0.04-5.00 ng/dL) and 67% with significant troponin increase (>5 ng/dL). Reduced cardiac function was also present in more than half of the patients on mechanical ventilation or those deceased. The in-hospital mortality of this cohort was 28% (N = 40). Using logistic regression analysis, we found that reduced cardiac function was associated with increased mortality with adjusted odds ratio (95% confidence interval) of 2.65 (1.18 to 5.96). CONCLUSIONS: Reduced cardiac function is highly prevalent among hospitalized COVID-19 patients with biomarkers of myocardial injury and is independently associated with mortality.


Subject(s)
COVID-19/mortality , Heart Injuries/mortality , Troponin I/blood , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , Cause of Death , Echocardiography, Doppler, Pulsed , Female , Heart Injuries/blood , Hospital Mortality , Humans , Male , Middle Aged , Outcome Assessment, Health Care , Retrospective Studies
9.
Magn Reson Imaging ; 53: 98-104, 2018 11.
Article in English | MEDLINE | ID: mdl-30036652

ABSTRACT

This work aims to demonstrate that radial acquisition with k-space variant reduced-FOV reconstruction can enable real-time cardiac MRI with an affordable computation cost. Due to non-uniform sampling, radial imaging requires k-space variant reconstruction for optimal performance. By converting radial parallel imaging reconstruction into the estimation of correlation functions with a previously-developed correlation imaging framework, Cartesian k-space may be reconstructed point-wisely based on parallel imaging relationship between every Cartesian datum and its neighboring radial samples. Furthermore, reduced-FOV correlation functions may be used to calculate a subset of Cartesian k-space data for image reconstruction within a small region of interest, making it possible to run real-time cardiac MRI with an affordable computation cost. In a stress cardiac test where the subject is imaged during biking with a heart rate of >100 bpm, this k-space variant reduced-FOV reconstruction is demonstrated in reference to several radial imaging techniques including gridding, GROG and SPIRiT. It is found that the k-space variant reconstruction outperforms gridding, GROG and SPIRiT in real-time imaging. The computation cost of reduced-FOV reconstruction is ~2 times higher than that of GROG. The presented work provides a practical solution to real-time cardiac MRI with radial acquisition and k-space variant reduced-FOV reconstruction in clinical settings.


Subject(s)
Heart/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Algorithms , Electrocardiography , Exercise Test , Fourier Analysis , Heart Rate , Humans , Models, Statistical , Phantoms, Imaging , Radiography
10.
J Cardiovasc Magn Reson ; 20(1): 26, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29669563

ABSTRACT

BACKGROUND: Myocardial strain is increasingly recognized as an important assessment for myocardial function. In addition, it also improves outcome prediction. However, there is lack of standardization in strain evaluation by cardiovascular magnetic resonance (CMR). In this study we compared strain values using multiple techniques and multiple vendor products. METHODS: Prospectively recruited patients with cardiomyopathy of diverse etiology (N = 77) and healthy controls (N = 10) underwent CMR on a 1.5 T scanner. Tagging, displacement encoding with stimulated echoes (DENSE) and balanced stead state free precession cine imaging were acquired on all subjects. A single matched mid left ventricular (LV) short axis plane was used for the comparisons of peak circumferential (Ecc) and radial strain (Err) and a 4-chamber view for longitudinal strain (Ell). Tagging images were analyzed using harmonic phase (HARP) and displacement encoding with stimulated echoes (DENSE) images using a proprietary program. Feature tracking (FT) was evaluated using 3 commercially available software from Tomtec Imaging Systems, Cardiac Image Modeller (CIM), and Circle Cardiovascular Imaging. Tagging data were used as reference. Statistic analyses were performed using paired t-test, intraclass correlation coefficient (ICC), Bland Altman limits of agreement and coefficient of variations. RESULTS: Average LV ejection fraction was 50% (range 32 to 62%). Regional LV wall motion abnormalities were present in 48% of the analyzed planes. The average Ecc was - 13 ± 4%, - 13 ± 4%, - 16 ± 6%, - 10 ± 3% and - 14 ± 4% for tagging, DENSE, Tomtec, CIM and Circle, respectively, with the best agreement seen in DENSE and Circle with tagging. The Err was highly varied with poor agreement across the techniques, 32 ± 24%, 40 ± 28%, 47 ± 26%, 64 ± 33% and 23 ± 9% for tagging, DENSE, Tomtec, CIM and Circle, respectively. The average Ell was - 14 ± 4%, - 8 ± 3%, - 13 ± 5%, - 11 ± 3% and - 12 ± 4% for tagging, DENSE, Tomtec, CIM and Circle, respectively with the best agreement seen in Tomtec and Circle with tagging. In the intra- and inter-observer agreement analysis the reproducibility of each technique was good except for Err by HARP. CONCLUSIONS: Small but important differences are evident in Ecc and Ell comparisons among vendors while large differences are seen in Err assessment. Our findings suggest that CMR strain values are technique and vendor dependent. Hence, it is essential to develop reference standard from each technique and analytical product for clinical use, and to sequentially compare patient data using the same software.


Subject(s)
Cardiomyopathies/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Myocardial Contraction , Stroke Volume , Ventricular Function, Left , Aged , Biomechanical Phenomena , Cardiomyopathies/etiology , Cardiomyopathies/physiopathology , Case-Control Studies , Female , Humans , Male , Middle Aged , Observer Variation , Predictive Value of Tests , Prospective Studies , Reproducibility of Results , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...