Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Immun Ageing ; 21(1): 32, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760856

ABSTRACT

BACKGROUND: An elevated neutrophil-lymphocyte ratio (NLR) in blood has been associated with Alzheimer's disease (AD). However, an elevated NLR has also been implicated in many other conditions that are risk factors for AD, prompting investigation into whether the NLR is directly linked with AD pathology or a result of underlying comorbidities. Herein, we explored the relationship between the NLR and AD biomarkers in the cerebrospinal fluid (CSF) of cognitively unimpaired (CU) subjects. Adjusting for sociodemographics, APOE4, and common comorbidities, we investigated these associations in two cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the M.J. de Leon CSF repository at NYU. Specifically, we examined associations between the NLR and cross-sectional measures of amyloid-ß42 (Aß42), total tau (t-tau), and phosphorylated tau181 (p-tau), as well as the trajectories of these CSF measures obtained longitudinally. RESULTS: A total of 111 ADNI and 190 NYU participants classified as CU with available NLR, CSF, and covariate data were included. Compared to NYU, ADNI participants were older (73.79 vs. 61.53, p < 0.001), had a higher proportion of males (49.5% vs. 36.8%, p = 0.042), higher BMIs (27.94 vs. 25.79, p < 0.001), higher prevalence of hypertensive history (47.7% vs. 16.3%, p < 0.001), and a greater percentage of Aß-positivity (34.2% vs. 20.0%, p = 0.009). In the ADNI cohort, we found cross-sectional associations between the NLR and CSF Aß42 (ß = -12.193, p = 0.021), but not t-tau or p-tau. In the NYU cohort, we found cross-sectional associations between the NLR and CSF t-tau (ß = 26.812, p = 0.019) and p-tau (ß = 3.441, p = 0.015), but not Aß42. In the NYU cohort alone, subjects classified as Aß + (n = 38) displayed a stronger association between the NLR and t-tau (ß = 100.476, p = 0.037) compared to Aß- subjects or the non-stratified cohort. In both cohorts, the same associations observed in the cross-sectional analyses were observed after incorporating longitudinal CSF data. CONCLUSIONS: We report associations between the NLR and Aß42 in the older ADNI cohort, and between the NLR and t-tau and p-tau in the younger NYU cohort. Associations persisted after adjusting for comorbidities, suggesting a direct link between the NLR and AD. However, changes in associations between the NLR and specific AD biomarkers may occur as part of immunosenescence.

2.
Article in English | MEDLINE | ID: mdl-38752577

ABSTRACT

BACKGROUND: Blood-brain barrier (BBB) dysfunction is emerging as an important pathophysiologic factor in Alzheimer's disease (AD). Cerebrospinal fluid (CSF) platelet-derived growth factor receptor-ß (PDGFRß) is a biomarker of BBB pericyte injury and has been implicated in cognitive impairment and AD. METHODS: We aimed to study CSF PDGFRß protein levels, along with CSF biomarkers of brain amyloidosis and tau pathology in a well-characterized population of cognitively unimpaired individuals and correlated CSF findings with amyloid-PET positivity. We performed an institutional review board (IRB)-approved cross-sectional analysis of a prospectively enrolled cohort of 36 cognitively normal volunteers with available CSF, Pittsburgh compound B PET/CT, Mini-Mental State Exam score, Global Deterioration Scale, and known apolipoprotein E (APOE) ε4 status. RESULTS: Thirty-six subjects were included. Mean age was 63.3 years; 31 of 36 were female, 6 of 36 were amyloid-PET-positive and 12 of 36 were APOE ε4 carriers. We found a moderate positive correlation between CSF PDGFRß and both total Tau (r=0.45, P=0.006) and phosphorylated Tau 181 (r=0.51, P=0.002). CSF PDGFRß levels were not associated with either the CSF Aß42 or the amyloid-PET. CONCLUSIONS: We demonstrated a moderate positive correlation between PDGFRß and both total Tau and phosphorylated Tau 181 in cognitively normal individuals. Our data support the hypothesis that BBB dysfunction represents an important early pathophysiologic step in AD, warranting larger prospective studies. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT00094939.

3.
J Alzheimers Dis ; 99(1): 307-319, 2024.
Article in English | MEDLINE | ID: mdl-38669537

ABSTRACT

Background: Alzheimer's disease (AD) pathology is considered to begin in the brainstem, and cerebral microglia are known to play a critical role in AD pathogenesis, yet little is known about brainstem microglia in AD. Translocator protein (TSPO) PET, sensitive to activated microglia, shows high signal in dorsal brainstem in humans, but the precise location and clinical correlates of this signal are unknown. Objective: To define age and AD associations of brainstem TSPO PET signal in humans. Methods: We applied new probabilistic maps of brainstem nuclei to quantify PET-measured TSPO expression over the whole brain including brainstem in 71 subjects (43 controls scanned using 11C-PK11195; 20 controls and 8 AD subjects scanned using 11C-PBR28). We focused on inferior colliculi (IC) because of visually-obvious high signal in this region, and potential relevance to auditory dysfunction in AD. We also assessed bilateral cortex. Results: TSPO expression was normally high in IC and other brainstem regions. IC TSPO was decreased with aging (p = 0.001) and in AD subjects versus controls (p = 0.004). In cortex, TSPO expression was increased with aging (p = 0.030) and AD (p = 0.033). Conclusions: Decreased IC TSPO expression with aging and AD-an opposite pattern than in cortex-highlights underappreciated regional heterogeneity in microglia phenotype, and implicates IC in a biological explanation for strong links between hearing loss and AD. Unlike in cerebrum, where TSPO expression is considered pathological, activated microglia in IC and other brainstem nuclei may play a beneficial, homeostatic role. Additional study of brainstem microglia in aging and AD is needed.


Subject(s)
Aging , Alzheimer Disease , Brain Stem , Microglia , Positron-Emission Tomography , Receptors, GABA , Humans , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Microglia/metabolism , Microglia/pathology , Male , Aged , Female , Aging/pathology , Brain Stem/metabolism , Brain Stem/pathology , Receptors, GABA/metabolism , Aged, 80 and over , Middle Aged , Isoquinolines , Adult
4.
Res Sq ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38559231

ABSTRACT

Background: An elevated neutrophil-lymphocyte ratio (NLR) in blood has been associated with Alzheimer's disease (AD). However, an elevated NLR has also been implicated in many other conditions that are risk factors for AD, prompting investigation into whether the NLR is directly linked with AD pathology or a result of underlying comorbidities. Herein, we explored the relationship between the NLR and AD biomarkers in the cerebrospinal fluid (CSF) of cognitively unimpaired (CU) subjects. Adjusting for sociodemographics, APOE4, and common comorbidities, we investigated these associations in two cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the M.J. de Leon CSF repository at NYU. Specifically, we examined associations between the NLR and cross-sectional measures of amyloid-ß42 (Aß42), total tau (t-tau), and phosphorylated tau181 (p-tau), as well as the trajectories of these CSF measures obtained longitudinally. Results: A total of 111 ADNI and 190 NYU participants classified as CU with available NLR, CSF, and covariate data were included. Compared to NYU, ADNI participants were older (73.79 vs. 61.53, p < 0.001), had a higher proportion of males (49.5% vs. 36.8%, p = 0.042), higher BMIs (27.94 vs. 25.79, p < 0.001), higher prevalence of hypertensive history (47.7% vs. 16.3%, p < 0.001), and a greater percentage of Aß-positivity (34.2% vs. 20.0%, p = 0.009). In the ADNI cohort, we found cross-sectional associations between the NLR and CSF Aß42 (ß=-12.193, p = 0.021), but not t-tau or p-tau. In the NYU cohort, we found cross-sectional associations between the NLR and CSF t-tau (ß = 26.812, p = 0.019) and p-tau (ß = 3.441, p = 0.015), but not Aß42. In the NYU cohort alone, subjects classified as Aß+ (n = 38) displayed a stronger association between the NLR and t-tau (ß = 100.476, p = 0.037) compared to Aß- subjects or the non-stratified cohort. In both cohorts, the same associations observed in the cross-sectional analyses were observed after incorporating longitudinal CSF data. Conclusions: We report associations between the NLR and Aß42 in the older ADNI cohort, and between the NLR and t-tau and p-tau181 in the younger NYU cohort. Associations persisted after adjusting for comorbidities, suggesting a direct link between the NLR and AD. However, changes in associations between the NLR and specific AD biomarkers may occur as part of immunosenescence.

5.
Neurotrauma Rep ; 5(1): 359-366, 2024.
Article in English | MEDLINE | ID: mdl-38655117

ABSTRACT

Brain fluid clearance by pathways including the recently described paravascular glymphatic system is a critical homeostatic mechanism by which metabolic products, toxins, and other wastes are removed from the brain. Brain fluid clearance may be especially important after traumatic brain injury (TBI), when blood, neuronal debris, inflammatory cells, and other substances can be released and/or deposited. Using a non-invasive dynamic positron emission tomography (PET) method that models the rate at which an intravenously injected radiolabeled molecule (in this case 11C-flumazenil) is cleared from ventricular cerebrospinal fluid (CSF), we estimated the overall efficiency of brain fluid clearance in humans who had experienced complicated-mild or moderate TBI 3-6 months before neuroimaging (n = 7) as compared to healthy controls (n = 9). While there was no significant difference in ventricular clearance between TBI subjects and controls, there was a significant group difference in dependence of ventricular clearance upon tracer delivery/blood flow to the ventricles. Specifically, in controls, ventricular clearance was highly, linearly dependent upon blood flow to the ventricle, but this relation was disrupted in TBI subjects. When accounting for blood flow and group-specific alterations in blood flow, ventricular clearance was slightly (non-significantly) increased in TBI subjects as compared to controls. Current results contrast with past studies showing reduced glymphatic function after TBI and are consistent with possible differential effects of TBI on glymphatic versus non-glymphatic clearance mechanisms. Further study using multi-modal methods capable of assessing and disentangling blood flow and different aspects of fluid clearance is needed to clarify clearance alterations after TBI.

6.
J Neuroradiol ; 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37907155

ABSTRACT

PURPOSE: The present study investigates a multimodal imaging assessment of glymphatic function and its association with brain amyloid-beta deposition. METHODS: Two brain CSF clearance measures (vCSF and DTI-ALPS) were derived from dynamic PET and MR diffusion tensor imaging (DTI) for 50 subjects, 24/50 were Aß positive (Aß+). T1W, T2W, DTI, T2FLAIR, and 11C-PiB and 18F-MK-6240 PET were acquired. Multivariate linear regression models were assessed with both vCSF and DTI-ALPS as independent variables and brain Aß as the dependent variable. Three types of models were evaluated, including the vCSF-only model, the ALPS-only model and the vCSF+ALPS combined model. Models were applied to the whole group, and Aß subgroups. All analyses were controlled for age, gender, and intracranial volume. RESULTS: Sample demographics (N=50) include 20 males and 30 females with a mean age of 69.30 (sd=8.55). Our results show that the combination of vCSF and ALPS associates with Aß deposition (p < 0.05, R2 = 0.575) better than either vCSF (p < 0.05, R2 = 0.431) or ALPS (p < 0.05, R2 = 0.372) alone in the Aß+ group. We observed similar results in whole-group analyses (combined model: p < 0.05, R2 = 0.287; vCSF model: p <0.05, R2 = 0.175; ALPS model: p < 0.05, R2 = 0.196) with less significance. Our data also showed that vCSF has higher correlation (r = -0.548) in subjects with mild Aß deposition and DTI-ALPS has higher correlation (r=-0.451) with severe Aß deposition subjects. CONCLUSION: The regression model with both vCSF and DTI-ALPS is better associated with brain Aß deposition. These two independent brain clearance measures may better explain the variation in Aß deposition than either term individually. Our results suggest that vCSF and DTI-ALPS reflect complementary aspects of brain clearance functions.

7.
Sci Rep ; 13(1): 15089, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37699966

ABSTRACT

Abnormal cognitive ageing, including dementia, poses serious challenges to health and social systems in ageing populations. As such, characterizing factors associated with abnormal cognitive ageing and developing needed preventive measures are of great importance. The ε4 allele of the Apolipoprotein E gene (APOE4) is a well-known genetic risk factor for late-onset Alzheimer's disease. APOE4 carriers are also at elevated risk of cardiovascular diseases which are associated with increased risk of cognitive impairment. On the other hand, APOE4 is known to be associated with reduced risk of multiple common types of cancer-a major age-related disease and leading cause of mortality. We conducted the first-ever study of APOE4's opposing effects on cognitive decline and mortality using competing risk models considering two types of death-death with high-amounts versus low-amounts of autopsy-assessed Alzheimer's neuropathology. We observed that APOE4 was associated with decreased mortality risk in people who died with low amounts of Alzheimer's-type neuropathology, but APOE4 was associated with increased mortality risk in people who died with high amounts of Alzheimer's-type neuropathology, a major risk factor of cognitive impairment. Possible preventive measures of abnormal cognitive ageing are also discussed.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Humans , Aging/genetics , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Cognition , Late Onset Disorders , Risk Factors
9.
J Hypertens ; 41(1): 35-43, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36204999

ABSTRACT

BACKGROUND: There is a well documented relationship between cardiovascular risk factors and the development of brain injury, which can lead to cognitive dysfunction. Hypertension (HTN) is a condition increasing the risk of silent and symptomatic ischemic brain lesions. Although benefits of hypertension treatment are indisputable, the target blood pressure value where the possibility of tissue damage is most reduced remains under debate. METHOD: Our group performed a cross-sectional ( n  = 376) and longitudinal ( n  = 188) study of individuals without dementia or stroke (60% women n  = 228, age 68.5 ±â€Š7.4 years; men n  = 148, age 70.7 ±â€Š6.9 years). Participants were split into hypertensive ( n  = 169) and normotensive ( n  = 207) groups. MR images were obtained on a 3T system. Linear modeling was performed in hypertensive and normotensive cohorts to investigate the relationship between systolic (SBP) and diastolic (DBP) blood pressure, white matter lesion (WML), and brain volumes. RESULTS: Participants in the hypertensive cohort showed a quadratic relationship between SBP and WML, with the lowest amounts of WML being measured in participants with readings at approximately 124 mmHg. Additionally, the hypertensive cohort also exhibited a quadratic relationship between DBP and mean hippocampal volume; participants with readings at approximately 77 mmHg showing the largest volumes. Longitudinally, all groups experienced WML growth, despite different BP trajectories, further suggesting that WML expansion may occur despite or because of BP reduction in individuals with compromised vascular system. CONCLUSION: Overall, our study suggests that in the hypertensive group there is a valley of mid-range blood pressures displaying less pathology in the brain.


Subject(s)
Hypertension , White Matter , Male , Female , Humans , Middle Aged , Aged , Blood Pressure/physiology , White Matter/diagnostic imaging , White Matter/pathology , Cross-Sectional Studies , Magnetic Resonance Imaging
10.
Front Aging Neurosci ; 14: 948470, 2022.
Article in English | MEDLINE | ID: mdl-36158536

ABSTRACT

Background and objectives: Obesity is a risk factor for cognitive decline. Probable mechanisms involve inflammation and cerebrovascular dysfunction, leading to diminished cerebral blood flow (CBF) and cerebrovascular reactivity (CVR). The hippocampus, crucially involved in memory processing and thus relevant to many types of dementia, poses a challenge in studies of perfusion and CVR, due to its location, small size, and complex shape. We examined the relationships between body mass index (BMI) and hippocampal resting CBF and CVR to carbon dioxide (CVRCO2) in a group of cognitively normal middle-aged and older adults. Methods: Our study was a retrospective analysis of prospectively collected data. Subjects were enrolled for studies assessing the role of hippocampal hemodynamics as a biomarker for AD among cognitively healthy elderly individuals (age > 50). Participants without cognitive impairment, stroke, and active substance abuse were recruited between January 2008 and November 2017 at the NYU Grossman School of Medicine, former Center for Brain Health. All subjects underwent medical, psychiatric, and neurological assessments, blood tests, and MRI examinations. To estimate CVR, we increased their carbon dioxide levels using a rebreathing protocol. Relationships between BMI and brain measures were tested using linear regression. Results: Our group (n = 331) consisted of 60.4% women (age 68.8 ± 7.5 years; education 16.8 ± 2.2 years) and 39.6% men (age 70.4 ± 6.4 years; education 16.9 ± 2.4 years). Approximately 22% of them (n = 73) were obese. BMI was inversely associated with CVRCO2 (ß = -0.12, unstandardized B = -0.06, 95% CI -0.11, -0.004). A similar relationship was observed after excluding subjects with diabetes and insulin resistance (ß = -0.15, unstandardized B = -0.08, 95% CI -0.16, -0.000). In the entire group, BMI was more strongly related to hippocampal CVRCO2 in women (ß = -0.20, unstandardized B = -0.08, 95% CI -0.13, -0.02). Discussion: These findings lend support to the notion that obesity is a risk factor for hippocampal hemodynamic impairment and suggest targeting obesity as an important prevention strategy. Prospective studies assessing the effects of weight loss on brain hemodynamic measures and inflammation are warranted.

11.
Sci Rep ; 12(1): 13351, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35922659

ABSTRACT

In rodents, hypothalamic inflammation plays a critical role in aging and age-related diseases. Hypothalamic inflammation has not previously been assessed in vivo in humans. We used Positron Emission Tomography (PET) with a radiotracer sensitive to the translocator protein (TSPO) expressed by activated microglia, to assess correlations between age and regional brain TSPO in a group of healthy subjects (n = 43, 19 female, aged 23-78), focusing on hypothalamus. We found robust age-correlated TSPO expression in thalamus but not hypothalamus in the combined group of women and men. This pattern differs from what has been described in rodents. Prominent age-correlated TSPO expression in thalamus in humans, but in hypothalamus in rodents, could reflect evolutionary changes in size and function of thalamus versus hypothalamus, and may be relevant to the appropriateness of using rodents to model human aging. When examining TSPO PET results in women and men separately, we found that only women showed age-correlated hypothalamic TSPO expression. We suggest this novel result is relevant to understanding a stark sex difference in human aging: that only women undergo loss of fertility-menopause-at mid-life. Our finding of age-correlated hypothalamic inflammation in women could have implications for understanding and perhaps altering reproductive aging in women.


Subject(s)
Microglia , Receptors, GABA , Adult , Aged , Brain/metabolism , Female , Humans , Inflammation/diagnostic imaging , Inflammation/metabolism , Male , Microglia/metabolism , Middle Aged , Positron-Emission Tomography/methods , Receptors, GABA/metabolism , Young Adult
12.
Eur J Radiol ; 153: 110383, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35661459

ABSTRACT

BACKGROUND: There is considerable variation in circle of Willis morphology among the general population, and these variations have been correlated with risk of aneurysms, cerebral ischemia, and other clinical events. PURPOSE: To investigate the relationship between circle of Willis variants and stroke outcome. MATERIALS AND METHODS: We performed a retrospective study involving 297 patients from our institution's acute stroke academic registry. All received MRA examinations of the head upon admission for acute strokes. All imaging was reviewed to assess for circle of Willis variants (particularly A1 and P1 aplasia or hypoplasia) along with vertebral artery aplasia or hypoplasia. Stroke outcome was defined as good (walking independently at the time of discharge) or poor (inability to walk at discharge, assistance needed to walk at discharge, or death). Severity of stroke was assessed using the National Institute of Health Stroke Scale. RESULTS: An incomplete circle of Willis was seen in 34% of subjects. There was no significant association between age, gender, hypertension, or presence of arterial stenosis and circle of Willis completeness. Using logistic regression, we found that the presence of an incomplete circle of Willis decreased the odds of a stroke patient having a good outcome by 47% (p = 0.046, OR 0.53, 95% CI 0.281-0.988), after adjusting for age and severity of stroke at admission. CONCLUSION: This study suggests that an incomplete circle of Willis may be associated with a poorer prognosis for stroke patients.


Subject(s)
Brain Ischemia , Stroke , Cerebral Infarction , Circle of Willis/diagnostic imaging , Humans , Retrospective Studies , Stroke/diagnostic imaging
13.
Neurobiol Dis ; 170: 105776, 2022 08.
Article in English | MEDLINE | ID: mdl-35643187

ABSTRACT

Cerebrospinal fluid (CSF), predominantly produced in the ventricles and circulating throughout the brain and spinal cord, is a key protective mechanism of the central nervous system (CNS). Physical cushioning, nutrient delivery, metabolic waste, including protein clearance, are key functions of the CSF in humans. CSF volume and flow dynamics regulate intracranial pressure and are fundamental to diagnosing disorders including normal pressure hydrocephalus, intracranial hypotension, CSF leaks, and possibly Alzheimer's disease (AD). The ability of CSF to clear normal and pathological proteins, such as amyloid-beta (Aß), tau, alpha synuclein and others, implicates it production, circulation, and composition, in many neuropathologies. Several neuroimaging modalities have been developed to probe CSF fluid dynamics and better relate CSF volume and flow to anatomy and clinical conditions. Approaches include 2-photon microscopic techniques, MRI (tracer-based, gadolinium contrast, endogenous phase-contrast), and dynamic positron emission tomography (PET) using existing approved radiotracers. Here, we discuss CSF flow neuroimaging, from animal models to recent clinical-research advances, summarizing current endeavors to quantify and map CSF flow with implications towards pathophysiology, new biomarkers, and treatments of neurological diseases.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Humans , Neurodegenerative Diseases/diagnostic imaging , Neuroimaging , Peptide Fragments/cerebrospinal fluid , Positron-Emission Tomography , tau Proteins/cerebrospinal fluid
14.
Front Aging Neurosci ; 14: 849932, 2022.
Article in English | MEDLINE | ID: mdl-35547630

ABSTRACT

Alzheimer's disease (AD), the most common cause of dementia, has limited treatment options. Emerging disease modifying therapies are targeted at clearing amyloid-ß (Aß) aggregates and slowing the rate of amyloid deposition. However, amyloid burden is not routinely evaluated quantitatively for purposes of disease progression and treatment response assessment. Statistical Parametric Mapping (SPM) is a technique comparing single-subject Positron Emission Tomography (PET) to a healthy cohort that may improve quantification of amyloid burden and diagnostic performance. While primarily used in 2-[18F]-fluoro-2-deoxy-D-glucose (FDG)-PET, SPM's utility in amyloid PET for AD diagnosis is less established and uncertainty remains regarding optimal normal database construction. Using commercially available SPM software, we created a database of 34 non-APOE ε4 carriers with normal cognitive testing (MMSE > 25) and negative cerebrospinal fluid (CSF) AD biomarkers. We compared this database to 115 cognitively normal subjects with variable AD risk factors. We hypothesized that SPM based on our database would identify more positive scans in the test cohort than the qualitatively rated [11C]-PiB PET (QR-PiB), that SPM-based interpretation would correlate better with CSF Aß42 levels than QR-PiB, and that regional z-scores of specific brain regions known to be involved early in AD would be predictive of CSF Aß42 levels. Fisher's exact test and the kappa coefficient assessed the agreement between SPM, QR-PiB PET, and CSF biomarkers. Logistic regression determined if the regional z-scores predicted CSF Aß42 levels. An optimal z-score cutoff was calculated using Youden's index. We found SPM identified more positive scans than QR-PiB PET (19.1 vs. 9.6%) and that SPM correlated more closely with CSF Aß42 levels than QR-PiB PET (kappa 0.13 vs. 0.06) indicating that SPM may have higher sensitivity than standard QR-PiB PET images. Regional analysis demonstrated the z-scores of the precuneus, anterior cingulate and posterior cingulate were predictive of CSF Aß42 levels [OR (95% CI) 2.4 (1.1, 5.1) p = 0.024; 1.8 (1.1, 2.8) p = 0.020; 1.6 (1.1, 2.5) p = 0.026]. This study demonstrates the utility of using SPM with a "true normal" database and suggests that SPM enhances diagnostic performance in AD in the clinical setting through its quantitative approach, which will be increasingly important with future disease-modifying therapies.

16.
Fluids Barriers CNS ; 19(1): 21, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35287702

ABSTRACT

BACKGROUND: In sporadic Alzheimer's disease (AD), brain amyloid-beta (Aß) deposition is believed to be a consequence of impaired Aß clearance, but this relationship is not well established in living humans. CSF clearance, a major feature of brain glymphatic clearance (BGC), has been shown to be abnormal in AD murine models. MRI phase contrast and intrathecally delivered contrast studies have reported reduced CSF flow in AD. Using PET and tau tracer 18F-THK5117, we previously reported that the ventricular CSF clearance of the PET tracer was reduced in AD and associated with elevated brain Aß levels. METHODS: In the present study, we use two PET tracers, 18F-THK5351 and 11C-PiB to estimate CSF clearance calculated from early dynamic PET frames in 9 normal controls and 15 AD participants. RESULTS: we observed that the ventricular CSF clearance measures were correlated (r = 0.66, p < 0.01), with reductions in AD of 18 and 27%, respectively. We also replicated a significant relationship between ventricular CSF clearance (18F-THK5351) and brain Aß load (r = - 0.64, n = 24, p < 0.01). With a larger sample size, we extended our observations to show that reduced CSF clearance is associated with reductions in cortical thickness and cognitive performance. CONCLUSIONS: Overall, the findings support the hypothesis that failed CSF clearance is a feature of AD that is related to Aß deposition and to the pathology of AD. Longitudinal studies are needed to determine whether failed CSF clearance is a predictor of progressive amyloidosis or its consequence.


Subject(s)
Alzheimer Disease , Amyloidosis , Alzheimer Disease/complications , Amyloid beta-Peptides , Amyloidosis/complications , Amyloidosis/pathology , Animals , Brain/diagnostic imaging , Brain/pathology , Humans , Magnetic Resonance Imaging , Mice
17.
Article in English | MEDLINE | ID: mdl-36876118

ABSTRACT

Repeated mild Traumatic Brain Injury (TBI) is a risk factor for Chronic Traumatic Encephalopathy (CTE), characterized pathologically by neurofibrillary tau deposition in the depths of brain sulci and surrounding blood vessels. The mechanism by which TBI leads to CTE remains unknown but has been posited to relate to axonal shear injury leading to release and possibly deposition of tau at the time of injury. As part of an IRB-approved study designed to learn how processes occurring acutely after TBI may predict later proteinopathy and neurodegeneration, we performed tau PET using 18F-MK6240 and MRI within 14 days of complicated mild TBI in three subjects. PET radiotracer accumulation was apparent in regions of traumatic hemorrhage in all subjects, with prominent intraparenchymal PET signal in one young subject with a history of repeated sports-related concussions. These results are consistent with off-target tracer binding to blood products as well as possible on-target binding to chronically and/or acutely-deposited neurofibrillary tau. Both explanations are highly relevant to applying tau PET to understanding TBI and CTE. Additional study is needed to assess the potential utility of tau PET in understanding how processes occurring acutely after TBI, such as release and deposition of tau and blood from damaged axons and blood vessels, may relate to development CTE years later.

18.
Clin Interv Aging ; 16: 1563-1571, 2021.
Article in English | MEDLINE | ID: mdl-34465985

ABSTRACT

OBJECTIVE: Compared to European Americans, research indicates that African Americans have higher white matter hyperintensity (WMH) load; however, the clinical and biological bases underlying this higher burden are poorly understood. We hypothesize that obesity may explain differences in WMH between African and European Americans. METHODS: Participants enrolled in longitudinal brain aging studies (n=292; 61% Female; 92% European American; mean age=69.6±7.7) completed evaluations including medical exams, neuroimaging, and sociodemographic surveys. Overweight/obese status defined as body mass index ≥30 kg/m2, and WMH load, captured by FLAIR images, as sum of deep and periventricular volumes, scored using the Fazekas scale (0-6), WMH≥4 considered high. RESULTS: Logistic regression analyses, adjusted for age, sex, hypertension, and smoking history, indicated that age and interaction between race and obesity were significant predictors of WMH, demonstrating that obesity significantly moderated the relationship between race and WMH. Age independently increased the odds of high WMH by 16% (OR=1.16, 95% CI=1.09-1.23, p<0.001). Stratified analysis indicates that older European Americans had increased WMH (OR=1.17, 95% CI=1.09-1.23, p<0.001), while obese African Americans had increased WMH (OR=27.65, 95% CI=1.47-519.13, p<0.05). In a case controlled subgroup matched by age, sex, and education (n=48), African Americans had significantly higher WMH load (27% vs 4%, Χ 2=5.3, p=0.02). CONCLUSION: Results denote that age predicted WMH among European Americans, while obesity predicted WMH among African Americans. Matched sample analyses indicate that obesity increases the odds of WMH, though more pronounced in African Americans. These findings suggest that obesity may explain the differential burden of white matter hyperintensity load, signifying public health and clinical importance.


Subject(s)
Leukoaraiosis , Obesity , White Matter , Aged , Female , Humans , Magnetic Resonance Imaging , Male , Obesity/epidemiology , Risk Factors , White Matter/diagnostic imaging
20.
Contemp Clin Trials ; 107: 106488, 2021 08.
Article in English | MEDLINE | ID: mdl-34166841

ABSTRACT

The LUCINDA Trial (Leuprolide plus Cholinesterase Inhibition to reduce Neurologic Decline in Alzheimer's) is a 52 week, randomized, placebo-controlled trial of leuprolide acetate (Eligard) in women with Alzheimer's disease (AD). Leuprolide acetate is a gonadotropin analogue commonly used for hormone-sensitive conditions such as prostate cancer and endometriosis. This repurposed drug demonstrated efficacy in a previous Phase II clinical trial in those women with AD who also received a stable dose of the acetylcholinesterase inhibitor donepezil (Bowen et al., 2015). Basic biological, epidemiological and clinical trial data suggest leuprolide acetate mediates improvement and stabilization of neuropathology and cognitive performance via the modulation of gonadotropin and/or gonadotropin-releasing hormone signaling. LUCINDA will enroll 150 women with mild-moderate AD who are receiving a stable dose of donepezil from three study sites in the United States. Cognition and function are the primary outcome measures as assessed by the Alzheimer's Disease Assessment Scale-Cognitive Subscale. Blood and MRI biomarkers are also measured to assess hormonal, inflammatory and AD biomarker changes. We present the protocol for LUCINDA and discuss trial innovations and challenges including changes necessitated by the covid-19 pandemic and study drug procurement issues.


Subject(s)
Alzheimer Disease , Acetylcholinesterase , Alzheimer Disease/drug therapy , COVID-19 , Cholinesterase Inhibitors/therapeutic use , Double-Blind Method , Female , Humans , Indans , Leuprolide/therapeutic use , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL
...