Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Nat Commun ; 12(1): 2782, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986293

ABSTRACT

Chronic stimulation of CD8+ T cells triggers exhaustion, a distinct differentiation state with diminished effector function. Exhausted cells exist in multiple differentiation states, from stem-like progenitors that are the key mediators of the response to checkpoint blockade, through to terminally exhausted cells. Due to its clinical relevance, there is substantial interest in defining the pathways that control differentiation and maintenance of these subsets. Here, we show that chronic antigen induces the anergy-associated transcription factor EGR2 selectively within progenitor exhausted cells in both chronic LCMV and tumours. EGR2 enables terminal exhaustion and stabilizes the exhausted transcriptional state by both direct EGR2-dependent control of key exhaustion-associated genes, and indirect maintenance of the exhausted epigenetic state. We show that EGR2 is a regulator of exhaustion that epigenetically and transcriptionally maintains the differentiation competency of progenitor exhausted cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Clonal Anergy/immunology , Early Growth Response Protein 2/metabolism , Lymphopoiesis/physiology , Animals , Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , Early Growth Response Protein 2/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Knockout
3.
Nat Immunol ; 21(10): 1256-1266, 2020 10.
Article in English | MEDLINE | ID: mdl-32839610

ABSTRACT

CD8+ T cells responding to chronic infections or tumors acquire an 'exhausted' state associated with elevated expression of inhibitory receptors, including PD-1, and impaired cytokine production. Exhausted T cells are continuously replenished by T cells with precursor characteristics that self-renew and depend on the transcription factor TCF1; however, their developmental requirements are poorly understood. In the present study, we demonstrate that high antigen load promoted the differentiation of precursor T cells, which acquired hallmarks of exhaustion within days of infection, whereas early effector cells retained polyfunctional features. Early precursor T cells showed epigenetic imprinting characteristic of T cell receptor-dependent transcription factor binding and were restricted to the generation of cells displaying exhaustion characteristics. Transcription factors BACH2 and BATF were key regulators with opposing functions in the generation of early precursor T cells. Overall, we demonstrate that exhaustion manifests first in TCF1+ precursor T cells and is propagated subsequently to the pool of antigen-specific T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/physiology , Precursor Cells, T-Lymphoid/immunology , Animals , Cell Differentiation , Cell Self Renewal , Cells, Cultured , Chronic Disease , Clonal Anergy , Epigenesis, Genetic , Hepatocyte Nuclear Factor 1-alpha/metabolism , Immune Tolerance , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, T-Cell/metabolism , T-Cell Antigen Receptor Specificity
4.
Blood ; 136(26): 3004-3017, 2020 12 24.
Article in English | MEDLINE | ID: mdl-32818230

ABSTRACT

Natural killer (NK) cells play critical roles in protection against hematological malignancies but can acquire a dysfunctional state, which limits antitumor immunity. However, the underlying reasons for this impaired NK cell function remain to be uncovered. We found that NK cells in aggressive B-cell lymphoma underwent substantial transcriptional reprogramming associated with increased lipid metabolism, including elevated expression of the transcriptional regulator peroxisome activator receptor-γ (PPAR-γ). Exposure to fatty acids in the lymphoma environment potently suppressed NK cell effector response and cellular metabolism. NK cells from both diffuse large B-cell lymphoma patients and Eµ-myc B-cell lymphoma-bearing mice displayed reduced interferon-γ (IFN-γ) production. Activation of PPAR-γ partially restored mitochondrial membrane potential and IFN-γ production. Overall, our data indicate that increased lipid metabolism, while impairing their function, is a functional adaptation of NK cells to the fatty-acid rich lymphoma environment.


Subject(s)
Killer Cells, Natural/immunology , Lipid Metabolism/immunology , Lymphoma, Large B-Cell, Diffuse/immunology , Tumor Microenvironment/immunology , Animals , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Killer Cells, Natural/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Membrane Potential, Mitochondrial/genetics , Membrane Potential, Mitochondrial/immunology , Mice , Mice, Transgenic , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , PPAR gamma/genetics , PPAR gamma/immunology , Tumor Microenvironment/genetics
5.
Nature ; 579(7800): 581-585, 2020 03.
Article in English | MEDLINE | ID: mdl-32103173

ABSTRACT

Adipose tissue is an energy store and a dynamic endocrine organ1,2. In particular, visceral adipose tissue (VAT) is critical for the regulation of systemic metabolism3,4. Impaired VAT function-for example, in obesity-is associated with insulin resistance and type 2 diabetes5,6. Regulatory T (Treg) cells that express the transcription factor FOXP3 are critical for limiting immune responses and suppressing tissue inflammation, including in the VAT7-9. Here we uncover pronounced sexual dimorphism in Treg cells in the VAT. Male VAT was enriched for Treg cells compared with female VAT, and Treg cells from male VAT were markedly different from their female counterparts in phenotype, transcriptional landscape and chromatin accessibility. Heightened inflammation in the male VAT facilitated the recruitment of Treg cells via the CCL2-CCR2 axis. Androgen regulated the differentiation of a unique IL-33-producing stromal cell population specific to the male VAT, which paralleled the local expansion of Treg cells. Sex hormones also regulated VAT inflammation, which shaped the transcriptional landscape of VAT-resident Treg cells in a BLIMP1 transcription factor-dependent manner. Overall, we find that sex-specific differences in Treg cells from VAT are determined by the tissue niche in a sex-hormone-dependent manner to limit adipose tissue inflammation.


Subject(s)
Gonadal Steroid Hormones/metabolism , Intra-Abdominal Fat/immunology , Sex Characteristics , T-Lymphocytes, Regulatory/immunology , Androgens/metabolism , Animals , Chemokine CCL2/immunology , Chromatin/genetics , Female , Gene Expression Regulation , Inflammation/immunology , Inflammation/metabolism , Interleukin-33/immunology , Intra-Abdominal Fat/metabolism , Male , Mice , Positive Regulatory Domain I-Binding Factor 1/metabolism , RNA-Seq , Receptors, CCR2/metabolism , Stromal Cells/cytology , Stromal Cells/immunology , Stromal Cells/metabolism , T-Lymphocytes, Regulatory/metabolism , Transcription, Genetic
6.
Nat Commun ; 11(1): 252, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31937752

ABSTRACT

Differentiation and homeostasis of Foxp3+ regulatory T (Treg) cells are strictly controlled by T-cell receptor (TCR) signals; however, molecular mechanisms that govern these processes are incompletely understood. Here we show that Bach2 is an important regulator of Treg cell differentiation and homeostasis downstream of TCR signaling. Bach2 prevents premature differentiation of fully suppressive effector Treg (eTreg) cells, limits IL-10 production and is required for the development of peripherally induced Treg (pTreg) cells in the gastrointestinal tract. Bach2 attenuates TCR signaling-induced IRF4-dependent Treg cell differentiation. Deletion of IRF4 promotes inducible Treg cell differentiation and rescues pTreg cell differentiation in the absence of Bach2. In turn, loss of Bach2 normalizes eTreg cell differentiation of IRF4-deficient Treg cells. Mechanistically, Bach2 counteracts the DNA-binding activity of IRF4 and limits chromatin accessibility, thereby attenuating IRF4-dependent transcription. Thus, Bach2 balances TCR signaling induced transcriptional activity of IRF4 to maintain homeostasis of thymically-derived and peripherally-derived Treg cells.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Basic-Leucine Zipper Transcription Factors/deficiency , Cell Differentiation/immunology , Chromatin/metabolism , Colitis/immunology , Disease Models, Animal , Epigenesis, Genetic/immunology , Forkhead Transcription Factors/metabolism , Gastrointestinal Tract/immunology , Gene Expression Regulation/immunology , Homeostasis/immunology , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/metabolism , Interleukin-10/biosynthesis , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Signal Transduction/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/metabolism
7.
Nat Commun ; 10(1): 5722, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31844089

ABSTRACT

IL-17-producing CD8+ (Tc17) cells are enriched in active lesions of patients with multiple sclerosis (MS), suggesting a role in the pathogenesis of autoimmunity. Here we show that amelioration of MS by dimethyl fumarate (DMF), a mechanistically elusive drug, associates with suppression of Tc17 cells. DMF treatment results in reduced frequency of Tc17, contrary to Th17 cells, and in a decreased ratio of the regulators RORC-to-TBX21, along with a shift towards cytotoxic T lymphocyte gene expression signature in CD8+ T cells from MS patients. Mechanistically, DMF potentiates the PI3K-AKT-FOXO1-T-BET pathway, thereby limiting IL-17 and RORγt expression as well as STAT5-signaling in a glutathione-dependent manner. This results in chromatin remodeling at the Il17 locus. Consequently, T-BET-deficiency in mice or inhibition of PI3K-AKT, STAT5 or reactive oxygen species prevents DMF-mediated Tc17 suppression. Overall, our data disclose a DMF-AKT-T-BET driven immune modulation and suggest putative therapy targets in MS and beyond.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , Dimethyl Fumarate/pharmacology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Multiple Sclerosis/drug therapy , Adolescent , Adult , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Dimethyl Fumarate/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/blood , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Humans , Immunosuppressive Agents , Interleukin-17/immunology , Interleukin-17/metabolism , Longitudinal Studies , Male , Mice , Middle Aged , Multiple Sclerosis/blood , Multiple Sclerosis/immunology , Th17 Cells/drug effects , Th17 Cells/immunology , Treatment Outcome , Young Adult
8.
Cell Rep ; 29(8): 2257-2269.e6, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31747599

ABSTRACT

Despite the key role that antibodies play in protection, the cellular processes mediating the acquisition of humoral immunity against malaria are not fully understood. Using an infection model of severe malaria, we find that germinal center (GC) B cells upregulate the transcription factor T-bet during infection. Molecular and cellular analyses reveal that T-bet in B cells is required not only for IgG2c switching but also favors commitment of B cells to the dark zone of the GC. T-bet was found to regulate the expression of Rgs13 and CXCR3, both of which contribute to the impaired GC polarization observed in the absence of T-bet, resulting in reduced IghV gene mutations and lower antibody avidity. These results demonstrate that T-bet modulates GC dynamics, thereby promoting the differentiation of B cells with increased affinity for antigen.


Subject(s)
B-Lymphocytes/metabolism , Germinal Center/cytology , Germinal Center/metabolism , Malaria/metabolism , T-Box Domain Proteins/metabolism , Animals , Antibody Affinity/genetics , Antibody Affinity/physiology , Malaria/immunology , Mice , Mice, Inbred C57BL , Mutation/genetics , RGS Proteins/genetics , RGS Proteins/metabolism , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism , T-Box Domain Proteins/genetics
9.
Blood ; 133(16): 1729-1741, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30755422

ABSTRACT

Somatically acquired mutations in PHF6 (plant homeodomain finger 6) frequently occur in hematopoietic malignancies and often coincide with ectopic expression of TLX3. However, there is no functional evidence to demonstrate whether these mutations contribute to tumorigenesis. Similarly, the role of PHF6 in hematopoiesis is unknown. We report here that Phf6 deletion in mice resulted in a reduced number of hematopoietic stem cells (HSCs), an increased number of hematopoietic progenitor cells, and an increased proportion of cycling stem and progenitor cells. Loss of PHF6 caused increased and sustained hematopoietic reconstitution in serial transplantation experiments. Interferon-stimulated gene expression was upregulated in the absence of PHF6 in hematopoietic stem and progenitor cells. The numbers of hematopoietic progenitor cells and cycling hematopoietic stem and progenitor cells were restored to normal by combined loss of PHF6 and the interferon α and ß receptor subunit 1. Ectopic expression of TLX3 alone caused partially penetrant leukemia. TLX3 expression and loss of PHF6 combined caused fully penetrant early-onset leukemia. Our data suggest that PHF6 is a hematopoietic tumor suppressor and is important for fine-tuning hematopoietic stem and progenitor cell homeostasis.


Subject(s)
Hematopoietic Stem Cells/cytology , Homeodomain Proteins/metabolism , Leukemia/etiology , Repressor Proteins/physiology , Animals , Carcinogenesis , Gene Expression Regulation , Humans , Mice , Mice, Knockout , Receptors, Interferon , Repressor Proteins/genetics , Tumor Suppressor Proteins
10.
Immunity ; 47(6): 1129-1141.e5, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29246443

ABSTRACT

During chronic stimulation, CD8+ T cells acquire an exhausted phenotype characterized by expression of inhibitory receptors, down-modulation of effector function, and metabolic impairments. T cell exhaustion protects from excessive immunopathology but limits clearance of virus-infected or tumor cells. We transcriptionally profiled antigen-specific T cells from mice infected with lymphocytic choriomeningitis virus strains that cause acute or chronic disease. T cell exhaustion during chronic infection was driven by high amounts of T cell receptor (TCR)-induced transcription factors IRF4, BATF, and NFATc1. These regulators promoted expression of inhibitory receptors, including PD-1, and mediated impaired cellular metabolism. Furthermore, they repressed the expression of TCF1, a transcription factor required for memory T cell differentiation. Reducing IRF4 expression restored the functional and metabolic properties of antigen-specific T cells and promoted memory-like T cell development. These findings indicate that IRF4 functions as a central node in a TCR-responsive transcriptional circuit that establishes and sustains T cell exhaustion during chronic infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Interferon Regulatory Factors/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Receptors, Antigen, T-Cell/immunology , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/immunology , CD8-Positive T-Lymphocytes/virology , Cell Differentiation , Gene Expression Regulation , HEK293 Cells , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/immunology , Humans , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Lymphocyte Activation , Lymphocyte Depletion , Lymphocytic Choriomeningitis/genetics , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/growth & development , Mice , Mice, Knockout , NFATC Transcription Factors/genetics , NFATC Transcription Factors/immunology , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Receptors, Antigen, T-Cell/genetics , Signal Transduction
11.
Cell Rep ; 20(12): 2906-2920, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28889989

ABSTRACT

After exiting the thymus, Foxp3+ regulatory T (Treg) cells undergo further differentiation in the periphery, resulting in the generation of mature, fully suppressive effector (e)Treg cells in a process dependent on TCR signaling and the transcription factor IRF4. Here, we show that tumor necrosis factor receptor superfamily (TNFRSF) signaling plays a crucial role in the development and maintenance of eTreg cells. TNFRSF signaling activated the NF-κB transcription factor RelA, which was required to maintain eTreg cells in lymphoid and non-lymphoid tissues, including RORγt+ Treg cells in the small intestine. In response to TNFRSF signaling, RelA regulated basic cellular processes, including cell survival and proliferation, but was dispensable for IRF4 expression or DNA binding, indicating that both pathways operated independently. Importantly, mutations in the RelA binding partner NF-κB1 compromised eTreg cells in humans, suggesting that the TNFRSF-NF-κB axis was required in a non-redundant manner to maintain eTreg cells in mice and humans.


Subject(s)
Lymphoid Tissue/metabolism , NF-kappa B/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/metabolism , Animals , Cell Differentiation , Cell Survival , Homeostasis , Humans , Interferon Regulatory Factors/metabolism , Intestines/cytology , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Transcription Factor RelA/metabolism
12.
J Exp Med ; 213(6): 1095-111, 2016 05 30.
Article in English | MEDLINE | ID: mdl-27217539

ABSTRACT

The generation of high-affinity antibodies requires germinal center (GC) development and differentiation of long-lived plasma cells in a multilayered process that is tightly controlled by the activity of multiple transcription factors. Here, we reveal a new layer of complexity by demonstrating that dynamic changes in Id3 and E-protein activity govern both GC and plasma cell differentiation. We show that down-regulation of Id3 in B cells is essential for releasing E2A and E2-2, which in a redundant manner are required for antigen-induced B cell differentiation. We demonstrate that this pathway controls the expression of multiple key factors, including Blimp1, Xbp1, and CXCR4, and is therefore critical for establishing the transcriptional network that controls GC B cell and plasma cell differentiation.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/immunology , Basic Helix-Loop-Helix Transcription Factors/immunology , Cell Differentiation/immunology , Germinal Center/immunology , Inhibitor of Differentiation Proteins/immunology , Plasma Cells/immunology , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Inhibitor of Differentiation Proteins/genetics , Mice , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1 , Receptors, CXCR4/genetics , Receptors, CXCR4/immunology , Transcription Factor 4 , Transcription Factors/genetics , Transcription Factors/immunology , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/immunology
13.
Nat Immunol ; 17(4): 422-32, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26950239

ABSTRACT

T cell responses are guided by cytokines that induce transcriptional regulators, which ultimately control differentiation of effector and memory T cells. However, it is unknown how the activities of these molecular regulators are coordinated and integrated during the differentiation process. Using genetic approaches and transcriptional profiling of antigen-specific CD8(+) T cells, we reveal a common program of effector differentiation that is regulated by IL-2 and IL-12 signaling and the combined activities of the transcriptional regulators Blimp-1 and T-bet. The loss of both T-bet and Blimp-1 leads to abrogated cytotoxic function and ectopic IL-17 production in CD8(+) T cells. Overall, our data reveal two major overlapping pathways of effector differentiation governed by the availability of Blimp-1 and T-bet and suggest a model for cytokine-induced transcriptional changes that combine, quantitatively and qualitatively, to promote robust effector CD8(+) T cell differentiation.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Interleukin-12/immunology , Interleukin-2/immunology , T-Box Domain Proteins/immunology , Transcription Factors/immunology , Animals , Arenaviridae Infections/immunology , Chromatin Immunoprecipitation , Cytokines/immunology , Flow Cytometry , Gene Expression Profiling , Influenza A Virus, H1N1 Subtype , Interleukin-17/immunology , Lymphocytic choriomeningitis virus , Mice , Orthomyxoviridae Infections/immunology , Positive Regulatory Domain I-Binding Factor 1 , Real-Time Polymerase Chain Reaction , STAT4 Transcription Factor/immunology , STAT5 Transcription Factor/immunology , Sequence Analysis, RNA , Signal Transduction
15.
Nat Immunol ; 16(3): 276-85, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25599561

ABSTRACT

Foxp3(+) regulatory T (Treg) cells in visceral adipose tissue (VAT-Treg cells) are functionally specialized tissue-resident cells that prevent obesity-associated inflammation and preserve insulin sensitivity and glucose tolerance. Their development depends on the transcription factor PPAR-γ; however, the environmental cues required for their differentiation are unknown. Here we show that interleukin 33 (IL-33) signaling through the IL-33 receptor ST2 and myeloid differentiation factor MyD88 is essential for development and maintenance of VAT-Treg cells and sustains their transcriptional signature. Furthermore, the transcriptional regulators BATF and IRF4 were necessary for VAT-Treg differentiation through direct regulation of ST2 and PPAR-γ expression. IL-33 administration induced vigorous population expansion of VAT-Treg cells, which tightly correlated with improvements in metabolic parameters in obese mice. Human omental adipose tissue Treg cells also showed high ST2 expression, suggesting an evolutionarily conserved requirement for IL-33 in VAT-Treg cell homeostasis.


Subject(s)
Adipose Tissue/cytology , Basic-Leucine Zipper Transcription Factors/metabolism , Interferon Regulatory Factors/metabolism , Interleukins/metabolism , T-Lymphocytes, Regulatory/cytology , Adipose Tissue/metabolism , Animals , Cell Differentiation/physiology , Humans , Interleukin-33 , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Differentiation Factor 88/metabolism , Obesity/metabolism , PPAR gamma/metabolism , Receptors, Cell Surface/metabolism , T-Lymphocytes, Regulatory/metabolism
16.
Nat Immunol ; 15(11): 1079-89, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25282160

ABSTRACT

Humoral autoimmunity paralleled by the accumulation of follicular helper T cells (T(FH) cells) is linked to mutation of the gene encoding the RNA-binding protein roquin-1. Here we found that T cells lacking roquin caused pathology in the lung and accumulated as cells of the T(H)17 subset of helper T cells in the lungs. Roquin inhibited T(H)17 cell differentiation and acted together with the endoribonuclease regnase-1 to repress target mRNA encoding the T(H)17 cell-promoting factors IL-6, ICOS, c-Rel, IRF4, IκBNS and IκBζ. This cooperation required binding of RNA by roquin and the nuclease activity of regnase-1. Upon recognition of antigen by the T cell antigen receptor (TCR), roquin and regnase-1 proteins were cleaved by the paracaspase MALT1. Thus, this pathway acts as a 'rheostat' by translating TCR signal strength via graded inactivation of post-transcriptional repressors and differential derepression of targets to enhance T(H)17 differentiation.


Subject(s)
Caspases/metabolism , Neoplasm Proteins/metabolism , Receptors, Antigen, T-Cell/immunology , Ribonucleases/metabolism , Th17 Cells/cytology , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Animals , Binding Sites/immunology , Cell Differentiation/immunology , Cell Line , Genes, rel/genetics , HEK293 Cells , Humans , Inducible T-Cell Co-Stimulator Protein/genetics , Interferon Regulatory Factors/genetics , Interleukin-6/genetics , Intracellular Signaling Peptides and Proteins , Lung/immunology , Lung/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , Nuclear Proteins/genetics , Proteins/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , Sequence Alignment , Th17 Cells/immunology , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL