Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37762024

ABSTRACT

One of the main challenges of medicinal chemistry is the search for new substances with antimicrobial potential that could be used in the fight against pathogenic microorganisms. Therefore, the antimicrobial activity of newly synthesized compounds is still being investigated. Carbazole-containing compounds appear to be promising antibacterial, antifungal, and antiviral agents. The aim of this study was to examine the antimicrobial potential and toxicity of newly synthesized isomeric fluorinated 4-[4-(benzylamino)butoxy]-9H-carbazole derivatives. Their antimicrobial activity against bacteria and fungi was tested according to CLSI guidelines. Similarly to previously studied carbazole-containing compounds, the tested derivatives showed the ability to effectively inhibit the growth of Gram-positive bacteria. The addition of carbazole derivatives 2, 4, and 8 at the concentration of 16 µg/mL caused the inhibition of S. aureus growth by over 60%. The MIC value of compounds 2-5 and 7-10 was 32 µg/mL for Staphylococcus strains. Gram-negative strains of E. coli and P. aeruginosa were found to be more resistant to the tested carbazole derivatives. E. coli cells treated with compounds 3 and 8 at a concentration of 64 µg/mL resulted in a greater-than-40% reduction in bacterial growth. In the case of the P. aeruginosa strain, all compounds in the highest concentration that we tested limited growth by 35-42%. Moreover, an over-60% inhibition of fungal growth was observed in the cultures of C. albicans and A. flavus incubated with 64 µg/mL of compounds 2 or 7 and 1 or 4, respectively. The hemolysis of red blood cells after their incubation with the tested carbazole derivatives was in the range of 2-13%. In the case of human fibroblast cells, the toxicity of the tested compounds was higher. Derivative 1, functionalized with fluorine in position 2 and its hydrobromide, was the least toxic. The obtained results indicated the antimicrobial potential of the tested 4-[4-(benzylamino)butoxy]-9H-carbazole derivatives, especially against S. aureus strains; therefore, it is worth further modifying these structures, in order to enhance their activity against pathogenic microorganisms.


Subject(s)
Escherichia coli , Staphylococcus aureus , Humans , Antifungal Agents/pharmacology , Candida albicans , Carbazoles/toxicity , Pseudomonas aeruginosa
2.
Molecules ; 28(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36771131

ABSTRACT

Simple and efficient strategies for the syntheses of enantiomerically enriched functionalized diethyl 2-amino-, 2,3-diamino- and 2-amino-3-hydroxypropylphosphonates have been developed starting from, respectively, N-protected (aziridin-2-yl)methylphosphonates, employing a regioselective aziridine ring-opening reaction with corresponding nucleophiles. Diethyl (R)- and (S)-2-(N-Boc-amino)propylphosphonates were obtained via direct regiospecific hydrogenolysis of the respective enantiomer of (R)- and (S)-N-Boc-(aziridin-2-yl)methylphosphonates. N-Boc-protected (R)- and (S)-2,3-diaminopropylphosphonates were synthesized from (R)- and (S)-N-Bn-(aziridin-2-yl)methylphosphonates via a regiospecific ring-opening reaction with neat trimethylsilyl azide and subsequent reduction of (R)- and (S)-2-(N-Boc-amino)-3-azidopropylphosphonates using triphenylphosphine. On the other hand, treatment of the corresponding (R)- and (S)-N-Bn-(aziridin-2-yl)methylphosphonates with glacial acetic acid led regiospecifically to the formation of (R)- and (S)-2-(N-Bn-amino)-3-acetoxypropylphosphonates.

3.
Antiviral Res ; 209: 105518, 2023 01.
Article in English | MEDLINE | ID: mdl-36587900

ABSTRACT

In this study, a series of 48 hybrids of the functionalised 1-[(1H-1,2,3-triazole-4-yl)methyl]quinazoline-2,4-dione 17-22 were synthesised and evaluated for potential antiviral activity. The new hybrids were designed to contain a diethoxyphosphoryl group connected to the triazole moiety via ethylene or propylene linker, and in which the benzyl or benzoyl function is substituted at N3 in the quinazoline-2,4-dione moiety. The Cu(I)-catalyzed Hüisgen dipolar cycloaddition of azidophosphonates 23 and 24 with the respective N1-propargylquinazoline-2,4-diones 26aa-26ag, 26ba-26bg, 27aa-27ad and 27ba-27bd was applied for the syntheses of the designed compounds. All final hybrids 17-22 and N3-functionalised N1-propargylquinazoline-2,4-diones 26 and 27 were subsequently evaluated for their antiviral activity toward a broad range of DNA and RNA viruses. Importantly, hybrids 19be-19bg and 20be-20bg showed profound antiviral activities against Respiratory Syncytial Virus (RSV) with EC50 values in the lower micromolar range, with activity against viral strains of both subtypes (RSV A and B). In addition, several compounds also exerted some weak antiviral activity against varicella zoster virus. Finally, 19 ag was the only compound that showed antiviral potency against human cytomegalovirus, although with rather weak inhibitory activity. Notably, none of the tested compounds was cytotoxic toward uninfected cell lines used for the antiviral assays at a concentration up to 100 µM, returning interesting therapeutic indices for respiratory syncytial virus.


Subject(s)
Quinazolines , Respiratory Syncytial Virus, Human , Humans , Quinazolines/pharmacology , Antiviral Agents/pharmacology , Cell Line , Triazoles/pharmacology , Structure-Activity Relationship
4.
Molecules ; 27(19)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36235061

ABSTRACT

Dipolar cycloaddition of the N-substituted C-(diethoxyphosphonyl)nitrones with N3-allyl-N1-benzylquinazoline-2,4-diones produced mixtures of diastereoisomeric 3-(diethoxyphosphonyl)isoxazolidines with a N1-benzylquinazoline-2,4-dione unit at C5. The obtained compounds were assessed for antiviral and antibacterial activities. Several compounds showed moderate inhibitory activities against VZV with EC50 values in the range of 12.63-58.48 µM. A mixture of isoxazolidines cis-20c/trans-20c (6:94) was found to be the most active against B. cereus PCM 1948, showing an MIC value 0.625 mg/mL, and also was not mutagenic up to this concentration.


Subject(s)
Herpes Zoster , Organophosphonates , Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Herpesvirus 3, Human , Humans , Quinazolines/pharmacology
5.
Molecules ; 27(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35566049

ABSTRACT

All the enantiomers of (1-amino-3-hydroxypropane-1,3-diyl)diphosphonic acid, newly design phosphonate analogues of 4-hydroxyglutamic acids, were obtained. The synthetic strategy involved Abramov reactions of diethyl (R)- and (S)-1-(N-Boc-amino)-3-oxopropylphosphonates with diethyl phosphite, separation of diastereoisomeric [1-(N-Boc-amino)-3-hydroxypropane-1,3-diyl]diphosphonates as O-protected esters, followed by their hydrolysis to the enantiomeric phosphonic acids. The absolute configuration of the enantiomeric phosphonates was established by comparing the 31P NMR chemical shifts of respective (S)-O-methylmandelic acid esters obtained from respective pairs of syn- and anti-[1-(N-Boc-amino)-3-hydroxypropane-1,3-diyl]diphosphonates according to the Spilling rule.


Subject(s)
Diphosphonates , Organophosphonates , Esters , Glutamates , Organophosphonates/chemistry , Stereoisomerism
6.
Int J Mol Sci ; 23(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35328832

ABSTRACT

Herein, we report the synthesis, antioxidant, and neuroprotective properties of some nucleobase-derived nitrones named 9a-i. The neuroprotective properties of nitrones, 9a-i, were measured against an oxygen-glucose-deprivation in vitro ischemia model using human neuroblastoma SH-SY5Y cells. Our results indicate that nitrones, 9a-i, have better neuroprotective and antioxidant properties than α-phenyl-N-tert-butylnitrone (PBN) and are similar to N-acetyl-L-cysteine (NAC), a well-known antioxidant and neuroprotective agent. The nitrones with the highest neuroprotective capacity were those containing purine nucleobases (nitrones 9f, g, B = adenine, theophylline), followed by nitrones with pyrimidine nucleobases with H or F substituents at the C5 position (nitrones 9a, c). All of these possess EC50 values in the range of 1-6 µM and maximal activities higher than 100%. However, the introduction of a methyl substituent (nitrone 9b, B = thymine) or hard halogen substituents such as Br and Cl (nitrones 9d, e, B = 5-Br and 5-Cl uracil, respectively) worsens the neuroprotective activity of the nitrone with uracil as the nucleobase (9a). The effects on overall metabolic cell capacity were confirmed by results on the high anti-necrotic (EC50's ≈ 2-4 µM) and antioxidant (EC50's ≈ 0.4-3.5 µM) activities of these compounds on superoxide radical production. In general, all tested nitrones were excellent inhibitors of superoxide radical production in cultured neuroblastoma cells, as well as potent hydroxyl radical scavengers that inhibit in vitro lipid peroxidation, particularly, 9c, f, g, presenting the highest lipoxygenase inhibitory activity among the tested nitrones. Finally, the introduction of two nitrone groups at 9a and 9d (bis-nitronas 9g, i) did not show better neuroprotective effects than their precursor mono-nitrones. These results led us to propose nitrones containing purine (9f, g) and pyrimidine (9a, c) nucleobases as potential therapeutic agents for the treatment of cerebral ischemia and/or neurodegenerative diseases, leading us to further investigate their effects using in vivo models of these pathologies.


Subject(s)
Neuroblastoma , Neuroprotective Agents , Antioxidants/pharmacology , Humans , Ischemia/drug therapy , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Nitrogen Oxides/pharmacology , Nitrogen Oxides/therapeutic use , Reperfusion , Superoxides , Uracil
7.
Antioxidants (Basel) ; 12(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36670898

ABSTRACT

Herein, we report the synthesis and antioxidant capacity of twelve novel 1,2,3-triazole-containing nitrones such as N-(2-(4-aryl-1H-1,2,3-triazol-1-yl)ethylidene)methanamine oxides 8a-f and N-(2-(4-aryl)-1H-1,2,3-triazol-1-yl)ethylidene)-2-methylpropan-2-amine oxides 9a-f, bearing an N-methyl, and an N-t-butyl substituent, respectively, at the nitrogen of the nitrone motif. Nitrones 8 and 9 were studied with regard to their antioxidant ability, as well as their ability to inhibit soybean lypoxygenase (LOX), and their in vitro antioxidant activity. For this, we used three different antioxidant assays, such as that featuring the interaction with the water-soluble azo compound AAPH for the inhibition of lipid peroxidation (LP), the competition with the DMSO for scavenging hydroxyl radicals, and the ABTS•+-decolorization assay. t-Butyl nitrone 9e, bearing the 2,4-difluorophenyl motif, showed a strong LP inhibitory effect (100%), close to the reference compound Trolox (93%), being the most potent LP inhibitor (LPi) of the whole series of tested nitrones. Nitrones 9d, 9e and 9f, bearing the 4-fluorophenyl, 2,4-difluorophenyl, and 4-fluoro-3-methylphenyl motif, respectively, were almost equipotent, and the most potent hydroxyl radical scavengers (~100%), more potent than Trolox (88%), were used as a reference compound. Regarding the LOX inhibition, the most potent inhibitor was the t-butyl substituted nitrone 9f (27 µM), bearing the 4-fluoro-3-methylphenyl motif, being 60-fold less potent than NDGA (0.45 µM), which was used as the standard in this test. The results from the antioxidant determination in the ABTS radical cation (ABTS•+) decolorization assay were not significant. N-Methyl nitrone 8f, bearing the 4-fluoro-3-methylphenyl motif, was the only promising representative, with a value of 34.3%, followed by nitrone 9f (16%). From the antioxidant analyses, we have identified N-(2-(4-(4-fluoro-3-methylphenyl)-1H-1,2,3-triazol-1-yl)ethylidene)-2-methylpropan-2-amine oxide (9f), bearing t-butyl and 4-fluoro-3-methylphenyl motifs in its structure, as the most balanced and potent antioxidant agent among the tested nitrones, as it was the most potent LOX inhibitor (27 µM), an extremely efficient and potent hydroxyl radical scavenger (99.9%), as well as one of the most potent LPi (87%) and ABTS•+ scavengers (16%).

8.
Int J Mol Sci ; 22(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34884610

ABSTRACT

One of the greatest threats to human and animal health is posed by infections caused by drug-resistant bacterial strains. Therefore, newly synthesised substances are tested for their antimicrobial activity. Carbazole derivatives seem to be promising antibacterial agents. This study aimed at investigating the toxicity and activity of newly synthesised, functionalised carbazole derivative 2 (4-(4-(benzylamino)butoxy)-9H-carbazole) against various microorganisms. Its antimicrobial potential against Gram-positive and Gram-negative bacteria, yeast, and filamentous fungi was examined according to CLSI (Clinical and Laboratory Standards Institute) standards. The tested compound was found to efficiently inhibit the growth of Gram-positive strains. The addition of carbazole derivative 2 at the concentration of 30 µg/mL caused inhibition of bacterial growth by over 95%. Moreover, about 50 and 45% limitation of Pseudomonas aeruginosa and Aspergillus flavus growth was observed in the samples incubated with the addition of 20 and 60 µg/mL of the compound, respectively. Its addition to the microbial cultures caused an increase in the permeability of the cellular membrane. Slight haemolysis of red blood cells was observed after 24-h treatment with carbazole derivative 2. On the other hand, human fibroblasts were found to be more sensitive to its effects. The activity of the tested compound indicates a possibility of its further modification in order to obtain effective drugs, especially against drug-resistant staphylococci.


Subject(s)
Anti-Infective Agents/pharmacology , Bacteria/drug effects , Carbazoles/chemistry , Fibroblasts/drug effects , Fungi/drug effects , Yeasts/drug effects , Anti-Infective Agents/chemistry , Humans
9.
Int J Mol Sci ; 22(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34360797

ABSTRACT

A novel series of N-substituted cis- and trans-3-aryl-4-(diethoxyphosphoryl)azetidin-2-ones were synthesized by the Kinugasa reaction of N-methyl- or N-benzyl-(diethyoxyphosphoryl)nitrone and selected aryl alkynes. Stereochemistry of diastereoisomeric adducts was established based on vicinal H3-H4 coupling constants in azetidin-2-one ring. All the obtained azetidin-2-ones were evaluated for the antiviral activity against a broad range of DNA and RNA viruses. Azetidin-2-one trans-11f showed moderate inhibitory activity against human coronavirus (229E) with EC50 = 45 µM. The other isomer cis-11f was active against influenza A virus H1N1 subtype (EC50 = 12 µM by visual CPE score; EC50 = 8.3 µM by TMS score; MCC > 100 µM, CC50 = 39.9 µM). Several azetidin-2-ones 10 and 11 were tested for their cytostatic activity toward nine cancerous cell lines and several of them appeared slightly active for Capan-1, Hap1 and HCT-116 cells values of IC50 in the range 14.5-97.9 µM. Compound trans-11f was identified as adjuvant of oxacillin with significant ability to enhance the efficacy of this antibiotic toward the highly resistant S. aureus strain HEMSA 5. Docking and molecular dynamics simulations showed that enantiomer (3R,4S)-11f can be responsible for the promising activity due to the potency in displacing oxacillin at ß-lactamase, thus protecting the antibiotic from undesirable biotransformation.


Subject(s)
Adjuvants, Pharmaceutic/chemistry , Adjuvants, Pharmaceutic/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Azetidines/pharmacology , Infections/drug therapy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Azetidines/chemistry , Bacterial Proteins/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Coronavirus 229E, Human/drug effects , Cytostatic Agents/chemistry , Cytostatic Agents/pharmacology , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Molecular Dynamics Simulation , Oxacillin/chemistry , Penicillin-Binding Proteins/chemistry , Staphylococcus aureus/drug effects , Stereoisomerism , beta-Lactamases/chemistry
10.
Molecules ; 26(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070623

ABSTRACT

Short and efficient syntheses of functionalized (pyrrolidin-2-yl)phosphonate and (5-oxopyrrolidin-2-yl)phosphonate have been developed. The synthetic strategy involved the diastereospecific 1,3-dipolar cycloaddition of N-benzyl-C-(diethoxyphosphoryl)nitrone to cis-1,4-dihydroxybut-2-ene and dimethyl maleate, respectively. O,O-Diethyl 3-carbamoyl-4-hydroxy(5-oxopyrrolidin-2-yl)phosphonate was obtained from O,O-diethyl 2-benzyl-4,5-dimethoxycarbonyl(isoxazolidin-3-yl)phosphonate by hydrogenation and subsequent treatment with ammonia, whereas transformation of O,O-diethyl 2-benzyl-4,5-dihydroxymethyl(isoxazolidin-3-yl)phosphonate into O,O-diethyl 3-aminomethyl-4-hydroxy(pyrrolidin-2-yl)phosphonate was accomplished by mesylation followed by hydrogenolysis to undergo intramolecular cyclization and the introduction of amino group via ammonolysis. Stereochemistry of the isoxazolidine cycloadducts, as well as the final functionalized (pyrrolidin-2-yl)- and (5-oxopyrrolidin-2-yl)phosphonates were established based on conformational analyses using vicinal H-H, H-P, and C-P couplings and supported by the observed diagnostic NOESY correlation signals.

11.
Int J Mol Sci ; 21(10)2020 May 18.
Article in English | MEDLINE | ID: mdl-32443403

ABSTRACT

It is well-established that aminothiols, to which cysteine (Cys) belongs, are highly reactive towards aldehydes in an aqueous environment, forming substituted thiazolidine carboxylic acids. This report provides evidence that formation of the product containing a thiazolidine ring through non-enzymatic condensation of Cys and an active form of vitamin B6 pyridoxal 5'-phosphate (PLP) occurs in vivo in humans. To prove this point, a new method, based on a gas chromatography coupled with mass spectrometry (GC-MS), has been designed to identify and quantify Cys and PLP adduct, 2-(3-hydroxy-5-phosphonooxymethyl-2-methyl-4-pyridyl)-1,3-thiazolidine-4-carboxylic acid (HPPTCA) in human plasma. The GC-MS assay relies on sample deproteinization by ultrafiltration over cut-off membranes and preconcentration by drying under vacuum, followed by treatment of the residue with derivatization mixture containing anhydrous pyridine, N-trimethylsilyl-N-methyl trifluoroacetamide (MSTFA) and trimethylchlorosilane (TMCS). The method quantifies HPPTCA in a linear range from 1 to 20 µmol L-1, where the lowest standard on the calibration curve refers to the limit of quantification (LOQ). The validity of the method was demonstrated. Furthermore, the method was successfully applied to plasma samples donated by apparently healthy volunteers and breast cancer patients. The GC-MS assay provides a new tool that will hopefully facilitate studies on the role of HPPTCA in living systems.


Subject(s)
Cysteine/metabolism , Plasma/metabolism , Pyridoxal Phosphate/metabolism , Thiazolidines/blood , Gas Chromatography-Mass Spectrometry , Humans , Thiazolidines/metabolism
12.
Article in English | MEDLINE | ID: mdl-31550993

ABSTRACT

A new series of phosphonylated triazolo[4,5-b]pyridine (1-deaza-8-azapurine), imidazo[4,5-b]pyridine (1-deazapurine) and imidazo[4,5-b]pyridin-2(3H)-one (1-deazapurin-8-one) were synthesized from 2-chloro-3-nitropyridine and selected diethyl É·-aminoalkylphosphonates followed by reduction of the nitro group and cyclization. In the final step O,O-diethylphosphonates were transformed into the corresponding phosphonic acids. All synthesized compounds were evaluated in vitro for inhibitory activity against a broad variety of DNA and RNA viruses and their cytotoxic potencies were also established. Compound 12f showed marginal activity against cytomegalovirus Davis strain (EC50 = 76.47 µM) in human embryonic lung (HEL) cells while compounds 10g (EC50 = 52.53 µM) and 12l (EC50 = 61.70 µM) were minimally active against the varicella-zoster virus Oka strain in HEL cells. Compounds under investigation were not cytotoxic at the maximum concentration evaluated (100 µM).


Subject(s)
Acids, Acyclic/pharmacology , Antiviral Agents/pharmacology , Drug Design , Organophosphonates/pharmacology , Pyrimidine Nucleotides/pharmacology , Acids, Acyclic/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , DNA Viruses/drug effects , Humans , Microbial Sensitivity Tests , Molecular Structure , Organophosphonates/chemistry , Pyrimidine Nucleotides/chemistry , RNA Viruses/drug effects
13.
Molecules ; 24(22)2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31698778

ABSTRACT

Homonucleoside analogues cis-16 and trans-17 having a (5-methoxycarbonyl)isoxazolidine framework were synthesized via the 1,3-dipolar cycloaddition of nucleobase-derived nitrones with methyl acrylate. Hydrogenolysis of the isoxazolidines containing thymine, dihydrouracil, theophylline and adenine moieties efficiently led to the formation of the respective γ-lactam analogues. γ-Lactam analogues having 5-bromouracil and 5-chlorouracil fragments were synthesized by treatment of uracil-containing γ-lactams with NBS and NCS. Isoxazolidine and γ-lactam analogues of homonucleosides obtained herein were evaluated for activity against a broad range of DNA and RNA viruses. None of the compounds that were tested exhibited antiviral or cytotoxic activity at concentrations up to 100 µM. The cytostatic activities of all compounds toward nine cancerous cell lines was tested. γ-Lactams trans-15e (Cl-Ura) and cis-15h (Theo) appeared the most active toward pancreatic adenocarcinoma cells (Capan-1), showing IC50 values 21.5 and 18.2 µM, respectively. Isoxazolidine cis-15e (Cl-Ura) inhibited the proliferation of colorectal carcinoma (HCT-116).


Subject(s)
Isoxazoles/chemistry , Lactams/chemistry , Nucleosides/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Isoxazoles/pharmacology , Lactams/pharmacology , Molecular Structure , Spectrum Analysis
14.
Molecules ; 24(21)2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31731561

ABSTRACT

All possible isomers of 1,2,3-tri(N-tert-butoxycarbonylamino)propylphosphonate 6 were synthesized from the respective diethyl [N-(1-phenylethyl)]-1-benzylamino-2,3-epiiminopropylphosphonates 5 via opening the aziridine ring with trimethylsilyl azide (TMSN3) followed by hydrogenolysis in the presence of di-tert-butyl dicarbonate (Boc2O). [N-(1-phenylethyl)]-1-benzylamino-2,3-epiiminopropylphosphonates (1R,2R,1'S)-5a and (1S,2S,1'R)-5c were smoothly transformed into diethyl 3-acetoxy-1-benzylamino-2-[N-(1-phenylethyl)amino]propylphosphonates (1R,2R,1'S)-9a and (1S,2S,1'R)-9c, respectively by the opening of the aziridine ring with acetic acid. Transformations of [N-(1-phenylethyl)]-1-benzylamino-2,3-epiiminopropylphosphonates (1S,2R,1'S)-5b and (1R,2S,1'R)-5d into diethyl 3-acetoxy-1-benzylamino-2-[(1-phenylethyl)amino]propylphosphonates (1S,2R,1'S)-9b and (1R,2S,1'R)-9d were accompanied by the formation of ethyl {1-(N-benzylacetamido)-3-hydroxy-2-[(1-phenylethyl)amino]propyl}phosphonate (1S,2R,1'S)-10b and (1R,2S,1'R)-10d and 3-(N-benzylacetamido)-4-[N-(1-phenylethyl)]amino-1,2-oxaphospholane (3S,4R,1'S)-11b and (3R,4S,1'R)-11d as side products. Diethyl (1R,2R)-, (1S,2S)-, (1S,2R)- and (1R,2S)-3-acetoxy-1,2-di(N-tert-butoxycarbonylamino)propylphosphonates 7a-7d were obtained from the respective 3-acetoxy-1-benzylamino-2-[N-(1-phenylethyl)amino]propylphosphonates 9a-9d by hydrogenolysis in the presence of Boc2O.


Subject(s)
Aziridines/chemical synthesis , Organophosphonates/chemical synthesis , Stereoisomerism , Aziridines/chemistry , Isomerism , Organophosphonates/chemistry
15.
ACS Omega ; 4(5): 8581-8587, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31459948

ABSTRACT

Herein, we report the synthesis and neuroprotective power of some N-substituted C-(dialkoxy)phosphorylated nitrones 4a-g, by studying their ability to increase the cell viability, as well as their capacity to reduce necrosis and apoptosis. We have identified (Z)-N-tert-butyl-1-(diethoxyphosphoryl)methanimine oxide (4e) as the most potent, nontoxic, and neuroprotective agent, with a high activity against neuronal necrotic cell death, a result that correlates very well with its great capacity for the inhibition of the superoxide production (72%), as well as with the inhibition of lipid peroxidation (62%), and the 5-lipoxygenase activity (45%) at 100 µM concentrations. Thus, nitrone 4e could be a convenient promising compound for further investigation.

16.
Beilstein J Org Chem ; 15: 1722-1757, 2019.
Article in English | MEDLINE | ID: mdl-31435446

ABSTRACT

Since Garner's aldehyde has several drawbacks, first of all is prone to racemization, alternative three-carbon chirons would be of great value in enantioselective syntheses of natural compounds and/or drugs. This review article summarizes applications of N-(1-phenylethyl)aziridine-2-carboxylates, -carbaldehydes and -methanols in syntheses of approved drugs and potential medications as well as of natural products mostly alkaloids but also sphingoids and ceramides and their 1- and 3-deoxy analogues and several hydroxy amino acids and their precursors. Designed strategies provided new procedures to several drugs and alternative approaches to natural products and proved efficiency of a 2-substituted N-(1-phenylethyl)aziridine framework as chiron bearing a chiral auxiliary.

17.
Bioanalysis ; 11(14): 1359-1373, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31368790

ABSTRACT

Aim: The first method on urinary excreted amounts of lipoyllysine (LLys) after lipoic acid (LA) supplementation was developed and validated. The suggested procedure allowed simultaneous determination of LLys and LA. Methodology & results: After the conversion of analytes into their reduced forms with tris(2-carboxyethyl)phosphine and derivatization via thiol group with 1-benzyl-2-chloropyridinium bromide, separation of analytes derivatives was performed on C18 column using a gradient mobile phase consisting of acetic acid and acetonitrile. The calibration curves for LA and LLys were linear (R2 > 0.999) in the range of 0.4-12 µM concentration and all validation results were acceptable, according to the US FDA bioanalytical method guidelines. Conclusion: This method was effectively applied for LA and LLys quantification in human urine after oral LA supplementation.


Subject(s)
Dietary Supplements , Lysine/analogs & derivatives , Thioctic Acid/analogs & derivatives , Thioctic Acid/administration & dosage , Thioctic Acid/pharmacology , Urinalysis/methods , Administration, Oral , Adult , Analytic Sample Preparation Methods , Female , Healthy Volunteers , Humans , Lysine/urine , Male , Middle Aged , Reference Standards , Thioctic Acid/urine
18.
Beilstein J Org Chem ; 15: 236-255, 2019.
Article in English | MEDLINE | ID: mdl-30745997

ABSTRACT

Glutamic acid is involved in several cellular processes though its role as the neurotransmitter is best recognized. For detailed studies of interactions with receptors a number of structural analogues of glutamic acid are required to map their active sides. This review article summarizes syntheses of nonracemic hydroxyglutamic acid analogues equipped with functional groups capable for the formation of additional hydrogen bonds, both as donors and acceptors. The majority of synthetic strategies starts from natural products and relies on application of chirons having the required configuration at the carbon atom bonded to nitrogen (e.g., serine, glutamic and pyroglutamic acids, proline and 4-hydroxyproline). Since various hydroxyglutamic acids were identified as components of complex natural products, syntheses of orthogonally protected derivatives of hydroxyglutamic acids are also covered.

19.
Arch Pharm (Weinheim) ; 352(3): e1800302, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30698294

ABSTRACT

A novel series of diethyl{4-[(4-oxoquinazolin-3(4H)-yl)methyl]-1H-1,2,3-triazol-1-yl}alkylphosphonates 9aa-aj and their respective derivatives substituted at C6 of the quinazolinone moiety with a bromine atom (9ba-bj) or a nitro group (9ca-cj) were synthesized and assessed for the antibacterial activity toward selected Gram-positive and Gram-negative bacteria. Their antifungal activity was also screened. Compound 9ac was found to be the most active against Staphylococcus aureus ATCC 6535 (MIC 0.625 mg/mL, MBC 1.25 mg/mL), phosphonates 9ab-ai showed promising activity against Enterococcus faecalis ATCC 29212 (MIC = 0.625 mg/mL, MBC = 1.25 mg/mL), while compounds 9ac-j appeared the most active toward Pseudomonas aeruginosa ATCC 27853 (MIC = 0.625 mg/mL, MBC = 1.25 mg/mL). Antifungal assays of compounds 9aa-aj, 9ba-bj, and 9ca-cj were conducted on Candida albicans ATCC 10231 and Aspergillus brasiliensis ATCC 16404 and revealed noticeable activity of 9aa-aj (MIC = 1.25 mg/mL).


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Quinazolinones/chemical synthesis , Triazoles/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Candida albicans/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Molecular Structure , Quinazolinones/chemistry , Quinazolinones/pharmacology , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacology
20.
Monatsh Chem ; 150(4): 733-745, 2019.
Article in English | MEDLINE | ID: mdl-32214483

ABSTRACT

ABSTRACT: To study the influence of a linker rigidity and changes in donor-acceptor properties, three series of nucleotide analogs containing a P-X-HN-C(O)- residue (X=CH(OH)CH2, CH(OH)CH2CH2, CH2CH(OH)CH2) as a replacement for the P-CH2-O-CHR- fragment in acyclic nucleoside phosphonates, e.g., adefovir, cidofovir, were synthesized. EDC proved to provide good yields of the analogs from the respective ω-amino-1- or -2-hydroxyalkylphosphonates and nucleobase-derived acetic acids. New phosphorus-nucleobase linkers are characterized by two fragments of the restricted rotation within amide bonds and in four-atom units (P-CH(OH)-CH2-N, P-CH(OH)-CH2-C and P-CH2-CH(OH)-C) in which antiperiplanar disposition of P and N/C atoms was deduced from 1H and 13C NMR spectral data. The synthesized analogs P-X-HNC(O)-CH2B [X=CH(OH)CH2, CH(OH)CH2CH2, CH2CH(OH)CH2] appeared inactive in antiviral assays on a wide variety of DNA and RNA viruses at concentrations up to 100 µM, while two phosphonates showed cytostatic activity towards myeloid leukemia (K-562) and multiple myeloma cells (MM.1S) with IC50 of 28.8 and 40.7 µM, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...