Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters











Publication year range
1.
Article in English | MEDLINE | ID: mdl-39351783

ABSTRACT

It is generally accepted that for safe use of neural interface electrodes, irreversible faradaic reactions should be avoided in favor of capacitive charge injection. However, in some cases, faradaic reactions can be desirable for controlling specific (electro)physiological outcomes or for biosensing purposes. This study aims to systematically map the basic faradaic reactions occurring at bioelectronic electrode interfaces. We analyze archetypical platinum-iridium (PtIr), the most commonly used electrode material in biomedical implants. By providing a detailed guide to these reactions and the factors that influence them, we offer a valuable resource for researchers seeking to suppress or exploit faradaic reactions in various electrode materials. We employed a combination of electrochemical techniques and direct quantification methods, including amperometric, potentiometric, and spectrophotometric assays, to measure O2, H2, pH, H2O2, Cl2/OCl-, and soluble platinum and iridium ions. We compared phosphate-buffered saline (PBS) with an unbuffered electrolyte and complex cell culture media containing proteins. Our results reveal that the "water window"─the potential range without significant water electrolysis─varies depending on the electrolyte used. In the culture medium that is rich with redox-active species, a window of potentials where no faradaic process occurs essentially does not exist. Under cathodic polarizations, significant pH increases (alkalization) were observed, while anodic water splitting competes with other processes in media, preventing prevalent acidification. We quantified the oxygen reduction reaction and accumulation of H2O2 as a byproduct. PtIr efficiently deoxygenates the electrolyte under low cathodic polarizations, generating local hypoxia. Under anodic polarizations, chloride oxidation competes with oxygen evolution, producing relatively high and cytotoxic concentrations of hypochlorite (OCl-) under certain conditions. These oxidative processes occur alongside PtIr dissolution through the formation of soluble salts. Our findings indicate that the conventional understanding of the water window is an oversimplification. Important faradaic reactions, such as oxygen reduction and chloride oxidation, occur within or near the edges of the water window. Furthermore, the definition of the water window significantly depends on the electrolyte composition, with PBS yielding different results compared with culture media.

2.
J Neural Eng ; 21(4)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39094614

ABSTRACT

Objective.Producing realistic numerical models of neurostimulation electrodes in contact with the electrolyte and tissue, for use in time-domain finite element method simulations while maintaining a reasonable computational burden remains a challenge. We aim to provide a straightforward experimental-theoretical hybrid approach for common electrode materials (Ti, TiN, ITO, Au, Pt, IrOx) that are relevant to the research field of bioelectronics, along with all the information necessary to replicate our approach in arbitrary geometry for real-life experimental applications.Approach.We used electrochemical impedance spectroscopy (EIS) to extract the electrode parameters in the AC regime under different DC biases. The pulsed electrode response was obtained by fast amperometry (FA) to optimize and verify the previously obtained electrode parameters in a COMSOL Multiphysics model. For optimization of the electrode parameters a constant phase element (CPE) needed to be implemented in time-domain.Main results.We find that the parameters obtained by EIS can be used to accurately simulate pulsed response only close to the electrode open circuit potential, while at other potentials we give corrections to the obtained parameters, based on FA measurements. We also find that for many electrodes (Au, TiN, Pt, and IrOx), it is important to implement a distributed CPE rather than an ideal capacitor for estimating the electrode double-layer capacitance. We outline and provide examples for the novel time-domain implementation of the CPE for finite element method simulations in COMSOL Multiphysics.Significance.An overview of electrode parameters for some common electrode materials can be a valuable and useful tool in numerical bioelectronics models. A provided FEM implementation model can be readily adapted to arbitrary electrode geometries and used for various applications. Finally, the presented methodology for parametrization of electrode materials can be used for any materials of interest which were not covered by this work.


Subject(s)
Electrodes , Finite Element Analysis , Humans , Computer Simulation , Dielectric Spectroscopy/methods , Electric Impedance
3.
Adv Healthc Mater ; : e2401303, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39139004

ABSTRACT

Neurostimulation employing photoactive organic semiconductors offers an appealing alternative to conventional techniques, enabling targeted action and wireless control through light. In this study, organic electrolytic photocapacitors (OEPC) are employed to investigate the effects of light-controlled electric stimulation on neuronal networks in vitro and in vivo. The interactions between the devices and biological systems are characterized. Stimulation of primary rat cortical neurons results in an elevated expression of c-Fos within a mature neuronal network. OEPC implantation for three weeks and subsequent stimulation of the somatosensory cortex leads to an increase of c-Fos in neurons at the stimulation site and in connected brain regions (entorhinal cortex, hippocampus), both in the ipsi- and contralateral hemispheres. Reactivity of glial and immune cells after semi-chronic implantation of OEPC in the rat brain is comparable to that of surgical controls, indicating minimal foreign body response. Device functionality is further substantiated through retained charging dynamics following explantation. OEPC-based, light-controlled electric stimulation has a significant impact on neural responsiveness. The absence of detrimental effects on both the brain and device encourages further use of OEPC as cortical implants. These findings highlight its potential as a novel mode of neurostimulation and instigate further exploration into applications in fundamental neuroscience.

4.
J Neural Eng ; 21(4)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38885680

ABSTRACT

Objective.The wireless transfer of power for driving implantable neural stimulation devices has garnered significant attention in the bioelectronics field. This study explores the potential of photovoltaic (PV) power transfer, utilizing tissue-penetrating deep-red light-a novel and promising approach that has received less attention compared to traditional induction or ultrasound techniques. Our objective is to critically assess key parameters for directly powering neurostimulation electrodes with PVs, converting light impulses into neurostimulation currents.Approach.We systematically investigate varying PV cell size, optional series configurations, and coupling with microelectrodes fabricated from a range of materials such as Pt, TiN, IrOx, Ti, W, PtOx, Au, or poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate). Additionally, two types of PVs, ultrathin organic PVs and monocrystalline silicon PVs, are compared. These combinations are employed to drive pairs of electrodes with different sizes and impedances. The readout method involves measuring electrolytic current using a straightforward amplifier circuit.Main results.Optimal PV selection is crucial, necessitating sufficiently large PV cells to generate the desired photocurrent. Arranging PVs in series is essential to produce the appropriate voltage for driving current across electrode/electrolyte impedances. By carefully choosing the PV arrangement and electrode type, it becomes possible to emulate electrical stimulation protocols in terms of charge and frequency. An important consideration is whether the circuit is photovoltage-limited or photocurrent-limited. High charge-injection capacity electrodes made from pseudo-faradaic materials impose a photocurrent limit, while more capacitive materials like Pt are photovoltage-limited. Although organic PVs exhibit lower efficiency than silicon PVs, in many practical scenarios, stimulation current is primarily limited by the electrodes rather than the PV driver, leading to potential parity between the two types.Significance.This study provides a foundational guide for designing a PV-powered neurostimulation circuit. The insights gained are applicable to bothin vitroandin vivoapplications, offering a resource to the neural engineering community.


Subject(s)
Electrodes, Implanted , Microelectrodes , Equipment Design/methods , Implantable Neurostimulators , Electric Stimulation/methods , Electric Stimulation/instrumentation
5.
Adv Healthc Mater ; 13(24): e2302400, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38758352

ABSTRACT

Platinum is the most widespread electrode material used for implantable biomedical and neuroelectronic devices, motivating exploring ways to improve its performance and understand its fundamental properties. Using reactive magnetron sputtering, PtOx is prepared, which upon partial reduction yields a porous thin-film form of platinum with favorable properties, notably record-low impedance values outcompeting other reports for platinum-based electrodes. It is established that its high electrochemical capacitance scales with thickness, in the way of volumetric capacitor materials like IrOx and poly(3,4-ethylenedioxythiophene), PEDOT. Unlike these two well-known analogs, however, it is found that PtOx capacitance is not caused by reversible pseudofaradaic reactions but rather due to high surface area. In contrast to IrOx, PtOx is not a reversible valence-change oxide, but rather a porous form of platinum. The findings show that this oxygen-containing form of Pt can place Pt electrodes on a level competitive with IrOx and PEDOT. Due to its relatively low cost and ease of preparation, PtOx can be a good choice for microfabricated bioelectronic devices.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Electric Capacitance , Electrodes , Platinum , Platinum/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Polymers/chemistry , Porosity , Surface Properties
6.
J Mater Chem C Mater ; 12(15): 5339-5346, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38645749

ABSTRACT

Organic electrochemical transistors (OECTs) have emerged as promising candidates for various fields, including bioelectronics, neuromorphic computing, biosensors, and wearable electronics. OECTs operate in aqueous solutions, exhibit high amplification properties, and offer ion-to-electron signal transduction. The OECT channel consists of a conducting polymer, with PEDOT:PSS receiving the most attention to date. While PEDOT:PSS is highly conductive, and benefits from optimized protocols using secondary dopants and detergents, new p-type and n-type polymers are emerging with desirable material properties. Among these, low-oxidation potential oligomers are highly enabling for bioelectronics applications, however the polymers resulting from their polymerization lag far behind in conductivity compared with the established PEDOT:PSS. In this work we show that by careful design of the OECT geometrical characteristics, we can overcome this limitation and achieve devices that are on-par with transistors employing PEDOT:PSS. We demonstrate that the vertical architecture allows for facile electropolymerization of a family of trimers that are polymerized in very low oxidation potentials, without the need for harsh chemicals or secondary dopants. Vertical and planar OECTs are compared using various characterization methods. We show that vOECTs are superior platforms in general and propose that the vertical architecture can be expanded for the realization of OECTs for various applications.

7.
Adv Sci (Weinh) ; 10(31): e2300473, 2023 11.
Article in English | MEDLINE | ID: mdl-37661572

ABSTRACT

Recent advances in light-responsive materials enabled the development of devices that can wirelessly activate tissue with light. Here it is shown that solution-processed organic heterojunctions can stimulate the activity of primary neurons at low intensities of light via photochemical reactions. The p-type semiconducting polymer PDCBT and the n-type semiconducting small molecule ITIC (a non-fullerene acceptor) are coated on glass supports, forming a p-n junction with high photosensitivity. Patch clamp measurements show that low-intensity white light is converted into a cue that triggers action potentials in primary cortical neurons. The study shows that neat organic semiconducting p-n bilayers can exchange photogenerated charges with oxygen and other chemical compounds in cell culture conditions. Through several controlled experimental conditions, photo-capacitive, photo-thermal, and direct hydrogen peroxide effects on neural function are excluded, with photochemical delivery being the possible mechanism. The profound advantages of low-intensity photo-chemical intervention with neuron electrophysiology pave the way for developing wireless light-based therapy based on emerging organic semiconductors.


Subject(s)
Neurons , Semiconductors , Stimulation, Chemical , Cell Culture Techniques , Polymers/chemistry
8.
Bioelectron Med ; 9(1): 18, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37553702

ABSTRACT

BACKGROUND: Peripheral nerve stimulation is used in both clinical and fundamental research for therapy and exploration. At present, non-invasive peripheral nerve stimulation still lacks the penetration depth to reach deep nerve targets and the stimulation focality to offer selectivity. It is therefore rarely employed as the primary selected nerve stimulation method. We have previously demonstrated that a new stimulation technique, temporal interference stimulation, can overcome depth and focality issues. METHODS: Here, we implement a novel form of temporal interference, bilateral temporal interference stimulation, for bilateral hypoglossal nerve stimulation in rodents and humans. Pairs of electrodes are placed alongside both hypoglossal nerves to stimulate them synchronously and thus decrease the stimulation amplitude required to activate hypoglossal-nerve-controlled tongue movement. RESULTS: Comparing bilateral temporal interference stimulation with unilateral temporal interference stimulation, we show that it can elicit the same behavioral and electrophysiological responses at a reduced stimulation amplitude. Traditional transcutaneous stimulation evokes no response with equivalent amplitudes of stimulation. CONCLUSIONS: During first-in-man studies, temporal interference stimulation was found to be well-tolerated, and to clinically reduce apnea-hypopnea events in a subgroup of female patients with obstructive sleep apnea. These results suggest a high clinical potential for the use of temporal interference in the treatment of obstructive sleep apnea and other diseases as a safe, effective, and patient-friendly approach. TRIAL REGISTRATION: The protocol was conducted with the agreement of the International Conference on Harmonisation Good Clinical Practice (ICH GCP), applicable United States Code of Federal Regulations (CFR) and followed the approved BRANY IRB File # 22-02-636-1279.

9.
Chembiochem ; 24(17): e202300353, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37184620

ABSTRACT

Reactive oxygen species (ROS) are an integral part of many anticancer therapies. Fenton-like processes involving reactions of peroxides with transition metal ions are a particularly potent and tunable subset of ROS approaches. Precise on-demand dosing of the Fenton reaction is an area of great interest. Herein, we present a concept of an electrochemical faradaic pixel that produces controlled amounts of ROS via a Fenton-like process. The pixel comprises a cathode and anode, where the cathode reduces dissolved oxygen to hydrogen peroxide. The anode is made of chromium, which is electrochemically corroded to yield chromium ions. Peroxide and chromium interact to form a highly oxidizing mixture of hydroxyl radicals and hexavalent Cr ions. After benchmarking the electrochemical properties of this type of device, we demonstrate how it can be used under in vitro conditions with a cancer cell line. The faradaic Fenton pixel is a general and scalable concept that can be used for on-demand delivery of redox-active products for controlling a physiological outcome.

10.
ACS Appl Mater Interfaces ; 15(22): 27002-27009, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37216209

ABSTRACT

Organic electrochemical transistors (OECTs) are promising building blocks for bioelectronic devices such as sensors and neural interfaces. While the majority of OECTs use simple planar geometry, there is interest in exploring how these devices operate with much shorter channels on the submicron scale. Here, we show a practical route toward the minimization of the channel length of the transistor using traditional photolithography, enabling large-scale utilization. We describe the fabrication of such transistors using two types of conducting polymers. First, commercial solution-processed poly(dioxyethylenethiophene):poly(styrene sulfonate), PEDOT:PSS. Next, we also exploit the short channel length to support easy in situ electropolymerization of poly(dioxyethylenethiophene):tetrabutyl ammonium hexafluorophosphate, PEDOT:PF6. Both variants show different promising features, leading the way in terms of transconductance (gm), with the measured peak gm up to 68 mS for relatively thin (280 nm) channel layers on devices with the channel length of 350 nm and with widths of 50, 100, and 200 µm. This result suggests that the use of electropolymerized semiconductors, which can be easily customized, is viable with vertical geometry, as uniform and thin layers can be created. Spin-coated PEDOT:PSS lags behind with the lower values of gm; however, it excels in terms of the speed of the device and also has a comparably lower off current (300 nA), leading to unusually high on/off ratio, with values up to 8.6 × 104. Our approach to vertical gap devices is simple, scalable, and can be extended to other applications where small electrochemical channels are desired.

11.
J Neural Eng ; 19(6)2022 12 09.
Article in English | MEDLINE | ID: mdl-36356313

ABSTRACT

Objective.Vagus nerve stimulation (VNS) is a promising approach for the treatment of a wide variety of debilitating conditions, including autoimmune diseases and intractable epilepsy. Much remains to be learned about the molecular mechanisms involved in vagus nerve regulation of organ function. Despite an abundance of well-characterized rodent models of common chronic diseases, currently available technologies are rarely suitable for the required long-term experiments in freely moving animals, particularly experimental mice. Due to challenging anatomical limitations, many relevant experiments require miniaturized, less invasive, and wireless devices for precise stimulation of the vagus nerve and other peripheral nerves of interest. Our objective is to outline possible solutions to this problem by using nongenetic light-based stimulation.Approach.We describe how to design and benchmark new microstimulation devices that are based on transcutaneous photovoltaic stimulation. The approach is to use wired multielectrode cuffs to test different stimulation patterns, and then build photovoltaic stimulators to generate the most optimal patterns. We validate stimulation through heart rate analysis.Main results.A range of different stimulation geometries are explored with large differences in performance. Two types of photovoltaic devices are fabricated to deliver stimulation: photocapacitors and photovoltaic flags. The former is simple and more compact, but has limited efficiency. The photovoltaic flag approach is more elaborate, but highly efficient. Both can be used for wireless actuation of the vagus nerve using light impulses.Significance.These approaches can enable studies in small animals that were previously challenging, such as long-termin vivostudies for mapping functional vagus nerve innervation. This new knowledge may have potential to support clinical translation of VNS for treatment of select inflammatory and neurologic diseases.


Subject(s)
Vagus Nerve Stimulation , Wireless Technology , Animals , Mice , Vagus Nerve Stimulation/instrumentation
12.
J Neural Eng ; 19(3)2022 06 27.
Article in English | MEDLINE | ID: mdl-35688124

ABSTRACT

Objective. Electric stimulation delivered by implantable electrodes is a key component of neural engineering. While factors affecting long-term stability, safety, and biocompatibility are a topic of continuous investigation, a widely-accepted principle is that charge injection should be reversible, with no net electrochemical products forming. We want to evaluate oxygen reduction reactions (ORR) occurring at different electrode materials when using established materials and stimulation protocols.Approach. As stimulation electrodes, we have tested platinum, gold, tungsten, nichrome, iridium oxide, titanium, titanium nitride, and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate). We use cyclic voltammetry and voltage-step amperometry in oxygenated versus inert conditions to establish at which potentials ORR occurs, and the magnitudes of diffusion-limited ORR currents. We also benchmark the areal capacitance of each electrode material. We use amperometric probes (Clark-type electrodes) to quantify the O2and H2O2concentrations in the vicinity of the electrode surface. O2and H2O2concentrations are measured while applying DC current, or various biphasic charge-balanced pulses of amplitude in the range 10-30µC cm-2/phase. To corroborate experimental measurements, we employ finite element modelling to recreate 3D gradients of O2and H2O2.Main results. All electrode materials support ORR and can create hypoxic conditions near the electrode surface. We find that electrode materials differ significantly in their onset potentials for ORR, and in the extent to which they produce H2O2as a by-product. A key result is that typical charge-balanced biphasic pulse protocols do lead to irreversible ORR. Some electrodes induce severely hypoxic conditions, others additionally produce an accumulation of hydrogen peroxide into the mM range.Significance. Our findings highlight faradaic ORR as a critical consideration for neural interface devices and show that the established biphasic/charge-balanced approach does not prevent irreversible changes in O2concentrations. Hypoxia and H2O2can result in different (electro)physiological consequences.


Subject(s)
Hydrogen Peroxide , Platinum , Electric Stimulation/methods , Electrodes , Electrodes, Implanted , Humans , Hypoxia , Oxygen
13.
Adv Healthc Mater ; 11(17): e2200075, 2022 09.
Article in English | MEDLINE | ID: mdl-35751364

ABSTRACT

Electrical stimulation of peripheral nerves is a cornerstone of bioelectronic medicine. Effective ways to accomplish peripheral nerve stimulation (PNS) noninvasively without surgically implanted devices are enabling for fundamental research and clinical translation. Here, it is demonstrated how relatively high-frequency sine-wave carriers (3 kHz) emitted by two pairs of cutaneous electrodes can temporally interfere at deep peripheral nerve targets. The effective stimulation frequency is equal to the offset frequency (0.5 - 4 Hz) between the two carriers. This principle of temporal interference nerve stimulation (TINS) in vivo using the murine sciatic nerve model is validated. Effective actuation is delivered at significantly lower current amplitudes than standard transcutaneous electrical stimulation. Further, how flexible and conformable on-skin multielectrode arrays can facilitate precise alignment of TINS onto a nerve is demonstrated. This method is simple, relying on the repurposing of existing clinically-approved hardware. TINS opens the possibility of precise noninvasive stimulation with depth and efficiency previously impossible with transcutaneous techniques.


Subject(s)
Transcutaneous Electric Nerve Stimulation , Animals , Electric Stimulation , Mice , Sciatic Nerve/physiology , Transcutaneous Electric Nerve Stimulation/methods
14.
Nanotechnology ; 33(24)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35226885

ABSTRACT

Optically driven electronic neuromodulation devices are a novel tool in basic research and offer new prospects in medical therapeutic applications. Optimal operation of such devices requires efficient light capture and charge generation, effective electrical communication across the device's bioelectronic interface, conformal adhesion to the target tissue, and mechanical stability of the device during the lifetime of the implant-all of which can be tuned by spatial structuring of the device. We demonstrate a 3D structured opto-bioelectronic device-an organic electrolytic photocapacitor spatially designed by depositing the active device layers on an inverted micropyramid-shaped substrate. Ultrathin, transparent, and flexible micropyramid-shaped foil was fabricated by chemical vapour deposition of parylene C on silicon moulds containing arrays of inverted micropyramids, followed by a peel-off procedure. The capacitive current delivered by the devices showed a strong dependency on the underlying spatial structure. The device performance was evaluated by numerical modelling. We propose that the developed numerical model can be used as a basis for the design of future functional 3D design of opto-bioelectronic devices and electrodes.

15.
Chem Rev ; 122(4): 4826-4846, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35050623

ABSTRACT

The nervous system poses a grand challenge for integration with modern electronics and the subsequent advances in neurobiology, neuroprosthetics, and therapy which would become possible upon such integration. Due to its extreme complexity, multifaceted signaling pathways, and ∼1 kHz operating frequency, modern complementary metal oxide semiconductor (CMOS) based electronics appear to be the only technology platform at hand for such integration. However, conventional CMOS-based electronics rely exclusively on electronic signaling and therefore require an additional technology platform to translate electronic signals into the language of neurobiology. Organic electronics are just such a technology platform, capable of converting electronic addressing into a variety of signals matching the endogenous signaling of the nervous system while simultaneously possessing favorable material similarities with nervous tissue. In this review, we introduce a variety of organic material platforms and signaling modalities specifically designed for this role as "translator", focusing especially on recent implementation in in vivo neuromodulation. We hope that this review serves both as an informational resource and as an encouragement and challenge to the field.


Subject(s)
Electronics , Semiconductors , Oxides
16.
Adv Mater Technol ; 7(9): 2101159, 2022 Sep.
Article in English | MEDLINE | ID: mdl-37064760

ABSTRACT

Nongenetic optical control of neurons is a powerful technique to study and manipulate the function of the nervous system. This research has benchmarked the performance of organic electrolytic photocapacitor (OEPC) optoelectronic stimulators at the level of single mammalian cells: human embryonic kidney (HEK) cells with heterologously expressed voltage-gated K+ channels and hippocampal primary neurons. OEPCs act as extracellular stimulation electrodes driven by deep red light. The electrophysiological recordings show that millisecond light stimulation of OEPC shifts conductance-voltage plots of voltage-gated K+ channels by ≈30 mV. Models are described both for understanding the experimental findings at the level of K+ channel kinetics in HEK cells, as well as elucidating interpretation of membrane electrophysiology obtained during stimulation with an electrically floating extracellular photoelectrode. A time-dependent increase in voltage-gated channel conductivity in response to OEPC stimulation is demonstrated. These findings are then carried on to cultured primary hippocampal neurons. It is found that millisecond time-scale optical stimuli trigger repetitive action potentials in these neurons. The findings demonstrate that OEPC devices enable the manipulation of neuronal signaling activities with millisecond precision. OEPCs can therefore be integrated into novel in vitro electrophysiology protocols, and the findings can inspire in vivo applications.

17.
Nat Biomed Eng ; 6(6): 741-753, 2022 06.
Article in English | MEDLINE | ID: mdl-34916610

ABSTRACT

Implantable devices for the wireless modulation of neural tissue need to be designed for reliability, safety and reduced invasiveness. Here we report chronic electrical stimulation of the sciatic nerve in rats by an implanted organic electrolytic photocapacitor that transduces deep-red light into electrical signals. The photocapacitor relies on commercially available semiconducting non-toxic pigments and is integrated in a conformable 0.1-mm3 thin-film cuff. In freely moving rats, fixation of the cuff around the sciatic nerve, 10 mm below the surface of the skin, allowed stimulation (via 50-1,000-µs pulses of deep-red light at wavelengths of 638 nm or 660 nm) of the nerve for over 100 days. The robustness, biocompatibility, low volume and high-performance characteristics of organic electrolytic photocapacitors may facilitate the wireless chronic stimulation of peripheral nerves.


Subject(s)
Prostheses and Implants , Sciatic Nerve , Animals , Electric Stimulation , Rats , Reproducibility of Results , Sciatic Nerve/physiology
18.
Adv Sci (Weinh) ; 9(3): e2103132, 2022 01.
Article in English | MEDLINE | ID: mdl-34825522

ABSTRACT

H2 O2 plays a significant role in a range of physiological processes where it performs vital tasks in redox signaling. The sensitivity of many biological pathways to H2 O2 opens up a unique direction in the development of bioelectronics devices to control levels of reactive-oxygen species (ROS). Here a microfabricated ROS modulation device that relies on controlled faradaic reactions is presented. A concentric pixel arrangement of a peroxide-evolving cathode surrounded by an anode ring which decomposes the peroxide, resulting in localized peroxide delivery is reported. The conducting polymer (poly(3,4-ethylenedioxythiophene) (PEDOT), is exploited as the cathode. PEDOT selectively catalyzes the oxygen reduction reaction resulting in the production of hydrogen peroxide (H2 O2 ). Using electrochemical and optical assays, combined with modeling, the performance of the devices is benchmarked. The concentric pixels generate tunable gradients of peroxide and oxygen concentrations. The faradaic devices are prototyped by modulating human H2 O2 -sensitive Kv7.2/7.3 (M-type) channels expressed in a single-cell model (Xenopus laevis oocytes). The Kv7 ion channel family is responsible for regulating neuronal excitability in the heart, brain, and smooth muscles, making it an ideal platform for faradaic ROS stimulation. The results demonstrate the potential of PEDOT to act as an H2 O2 delivery system, paving the way to ROS-based organic bioelectronics.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/metabolism , Hydrogen Peroxide/metabolism , Polymers/metabolism , Potassium Channels, Voltage-Gated/metabolism , Animals , Models, Animal , Oocytes/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Xenopus laevis
20.
J Neural Eng ; 18(6)2021 11 19.
Article in English | MEDLINE | ID: mdl-34736225

ABSTRACT

Objective.Understanding how the retina converts a natural image or an electrically stimulated one into neural firing patterns is the focus of on-going research activities.Ex vivo, the retina can be readily investigated using multi electrode arrays (MEAs). However, MEA recording and stimulation from an intact retina (in the eye) has been so far insufficient.Approach.In the present study, we report new soft carbon electrode arrays suitable for recording and stimulating neural activity in an intact retina. Screen-printing of carbon ink on 20µm polyurethane (PU) film was used to realize electrode arrays with electrodes as small as 40µm in diameter. Passivation was achieved with a holey membrane, realized using laser drilling in a thin (50µm) PU film. Plasma polymerized 3.4-ethylenedioxythiophene was used to coat the electrode array to improve the electrode specific capacitance. Chick retinas, embryonic stage day 13, both explanted and intact inside an enucleated eye, were used.Main results.A novel fabrication process based on printed carbon electrodes was developed and yielded high capacitance electrodes on a soft substrate.Ex vivoelectrical recording of retina activity with carbon electrodes is demonstrated. With the addition of organic photo-capacitors, simultaneous photo-electrical stimulation and electrical recording was achieved. Finally, electrical activity recordings from an intact chick retina (inside enucleated eyes) were demonstrated. Both photosensitive retinal ganglion cell responses and spontaneous retina waves were recorded and their features analyzed.Significance.Results of this study demonstrated soft electrode arrays with unique properties, suitable for simultaneous recording and photo-electrical stimulation of the retina at high fidelity. This novel electrode technology opens up new frontiers in the study of neural tissuein vivo.


Subject(s)
Retina , Electric Stimulation/methods , Microelectrodes , Retina/physiology
SELECTION OF CITATIONS
SEARCH DETAIL