Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
2.
BMJ Neurol Open ; 4(2): e000333, 2022.
Article in English | MEDLINE | ID: mdl-36101543

ABSTRACT

Introduction: Gait difficulties are common in Parkinson's disease (PD) and cause significant disability. These symptoms are often resistant to treatment. Spinal cord stimulation (SCS) has been found to improve gait, including freezing of gait, in a small number of patients with PD. The mechanism of action is unclear, and some patients are non-responders. With this double-blind, placebo-controlled efficacy and feasibility clinical and imaging study, we aim to shed light on the mechanism of action of SCS and collect data to inform development of a scientifically sound clinical trial protocol. We also aim to identify clinical and imaging biomarkers at baseline that could be predictive of a favourable or a negative outcome of SCS and improve patient selection. Methods and analysis: A total of 14 patients will be assessed with clinical rating scales and gait evaluations at baseline, and at 6 and 12 months after SCS implantation. They will also receive serial 18F-deoxyglucose and 18FEOBV PET scans to assess the effects of SCS on cortical/subcortical activity and brain cholinergic function. The first two patients will be included in an open pilot study while the rest will be randomised to receive active treatment or placebo (no stimulation) for 6 months. From this point, the entire cohort will enter an open label active treatment phase for a subsequent 6 months. Ethics and dissemination: This study was reviewed and approved by the Committee on Health Research Ethics, Central Denmark RM. It is funded by the Danish Council for Independent Research. Independent of outcome, the results will be published in peer-reviewed journals and presented at national and international conferences. Trial registration number: NCT05110053; ClinicalTrials.gov Identifier.

3.
Biomedicines ; 10(9)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36140418

ABSTRACT

Brain disease has become one of this century's biggest health challenges, urging the development of novel, more effective treatments. To this end, neuromodulation represents an excellent method to modulate the activity of distinct neuronal regions to alleviate disease. Recently, the medical indications for neuromodulation therapy have expanded through the adoption of the idea that neurological disorders emerge from deficits in systems-level structures, such as brain waves and neural topology. Connections between neuronal regions are thought to fluidly form and dissolve again based on the patterns by which neuronal populations synchronize. Akin to a fire that may spread or die out, the brain's activity may similarly hyper-synchronize and ignite, such as seizures, or dwindle out and go stale, as in a state of coma. Remarkably, however, the healthy brain remains hedged in between these extremes in a critical state around which neuronal activity maneuvers local and global operational modes. While it has been suggested that perturbations of this criticality could underlie neuropathologies, such as vegetative states, epilepsy, and schizophrenia, a major translational impact is yet to be made. In this hypothesis article, we dissect recent computational findings demonstrating that a neural network's short- and long-range connections have distinct and tractable roles in sustaining the critical regime. While short-range connections shape the dynamics of neuronal activity, long-range connections determine the scope of the neuronal processes. Thus, to facilitate translational progress, we introduce topological and dynamical system concepts within the framework of criticality and discuss the implications and possibilities for therapeutic neuromodulation guided by topological decompositions.

5.
Ugeskr Laeger ; 184(27)2022 07 04.
Article in Danish | MEDLINE | ID: mdl-35786495

ABSTRACT

Chronic neuropathic pain is often very difficult to treat effectively and constitutes a significant burden on both the affected patients and society. Invasive neuromodulation, electrical stimulation of specific nerve structures with implanted electrodes, can be a viable treatment option for patients suffering from severe, chronic neuropathic pain where conventional treatment has not provided sufficient pain relief. Careful patient selection is vital. This paper provides an overview of the treatment field in Denmark.


Subject(s)
Pain Management , Denmark , Electric Stimulation , Humans , Patient Selection
6.
J Neurosci Methods ; 378: 109659, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35772608

ABSTRACT

BACKGROUND: Neuromodulation is a rapidly expanding therapeutic option considered within neuropsychiatry, pain and rehabilitation therapy. Combining electrostimulation with feedback from fMRI can provide information about the mechanisms underlying the therapeutic effects, but so far, such studies have been hampered by the lack of technology to conduct safe and accurate experiments. Here we present a system for fMRI compatible electrical stimulation, and the first proof-of-concept neuroimaging data with deep brain stimulation (DBS) in pigs obtained with the device. NEW METHOD: The system consists of two modules, placed in the control and scanner room, connected by optical fiber. The system also connects to the MRI scanner to timely initiate the stimulation sequence at start of scan. We evaluated the system in four pigs with DBS in the subthalamic nucleus (STN) while we acquired BOLD responses in the STN and neocortex. RESULTS: We found that the system delivered robust electrical stimuli to the implanted electrode in sync with the preprogrammed fMRI sequence. All pigs displayed a DBS-STN induced neocortical BOLD response, but none in the STN. COMPARISONS WITH EXISTING METHOD: The system solves three major problems related to electric stimuli and fMRI examinations, namely preventing distortion of the fMRI signal, enabling communication that synchronize the experimental conditions, and surmounting the safety hazards caused by interference with the MRI scanner. CONCLUSIONS: The fMRI compatible electrical stimulator circumvents previous problems related to electroceuticals and fMRI. The system allows flexible modifications for fMRI designs and stimulation parameters, and can be customized to electroceutical applications beyond DBS.


Subject(s)
Deep Brain Stimulation , Subthalamic Nucleus , Animals , Electric Stimulation , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Subthalamic Nucleus/diagnostic imaging , Subthalamic Nucleus/physiology , Swine
7.
J Neurol ; 269(8): 4068-4079, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35378605

ABSTRACT

INTRODUCTION: Disabling gait symptoms, especially freezing of gait (FoG), represents a milestone in the progression of Parkinson's disease (PD). This systematic review and network meta-analysis assessed and ranked interventions according to their effectiveness in treating gait symptoms in people with PD across four different groups of gait measures. METHODS: A systematic search was carried out across PubMed, EMBASE, PubMed Central (PMC), and Cochrane Central Library from January 2000 to April 2021. All interventions, or combinations, were included. The primary outcome was changes in objective gait measures, before and after intervention. Outcome measures in the included studies were stratified into four different types of gait outcome measures; dynamic gait, fitness, balance, and freezing of gait. For the statistical analysis, five direct head-to-head comparisons of interventions, as well as indirect comparisons were performed. Corresponding forest plots ranking the interventions were generated. RESULTS: The search returned 6288 articles. From these, 148 articles could be included. Of the four different groups of measurement, three were consistent, meaning that there was agreement between direct and indirect evidence. The groups with consistent evidence were dynamic gait, fitness, and freezing of gait. For dynamic gait measures, treatments with the largest observed effect were Aquatic Therapy with dual task exercising (SMD 1.99 [- 1.00; 4.98]) and strength and balance training (SMD 1.95 [- 0.20; 4.11]). For measures of fitness, treatments with the largest observed effects were aquatic therapy (SMD 3.41 [2.11; 4.71] and high-frequency repetitive transcranial magnetic stimulation (SMD 2.51 [1.48; 3.55]). For FoG measures, none of the included interventions yielded significant results. CONCLUSION: Some interventions can ameliorate gait impairment in people with PD. No recommendations on a superior intervention can be made. None of the studied interventions proved to be efficacious in the treatment of FoG. PROSPERO (registration ID CRD42021264076).


Subject(s)
Gait Disorders, Neurologic , Parkinson Disease , Gait/physiology , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Humans , Network Meta-Analysis , Parkinson Disease/complications , Parkinson Disease/therapy , Randomized Controlled Trials as Topic
8.
BMJ Open ; 12(1): e055570, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35105647

ABSTRACT

INTRODUCTION: Endoscopic third ventriculostomy (ETV) is becoming an increasingly widespread treatment for hydrocephalus, but research is primarily based on paediatric populations. In 2009, Kulkarni et al created the ETV Success score to predict the outcome of ETV in children. The purpose of this study is to create a prognostic model to predict the success of ETV for adult patients with hydrocephalus. The ability to predict who will benefit from an ETV will allow better primary patient selection both for ETV and shunting. This would reduce additional second procedures due to primary treatment failure. A success score specific for adults could also be used as a communication tool to provide better information and guidance to patients. METHODS AND ANALYSIS: The study will adhere to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis reporting guidelines and conducted as a retrospective chart review of all patients≥18 years of age treated with ETV at the participating centres between 1 January 2010 and 31 December 2018. Data collection is conducted locally in a standardised database. Univariate analysis will be used to identify several strong predictors to be included in a multivariate logistic regression model. The model will be validated using K-fold cross validation. Discrimination will be assessed using area under the receiver operating characteristic curve (AUROC) and calibration with calibration belt plots. ETHICS AND DISSEMINATION: The study is approved by appropriate ethics or patient safety boards in all participating countries. TRIAL REGISTRATION NUMBER: NCT04773938; Pre-results.


Subject(s)
Hydrocephalus , Third Ventricle , Adult , Child , Humans , Hydrocephalus/surgery , Infant , Multicenter Studies as Topic , Prognosis , Retrospective Studies , Third Ventricle/surgery , Treatment Outcome , Ventriculostomy/methods
9.
Front Neural Circuits ; 15: 716145, 2021.
Article in English | MEDLINE | ID: mdl-34899195

ABSTRACT

Background: Deep brain stimulation (DBS) of the dorsal subthalamic nucleus (STN) is a validated neurosurgical treatment of Parkinson's Disease (PD). To investigate the mechanism of action, including potential DBS induced neuroplasticity, we have previously used a minipig model of Parkinson's Disease, although the basal ganglia circuitry was not elucidated in detail. Aim: To describe the cortical projections from the primary motor cortex (M1) to the basal ganglia and confirm the presence of a cortico-striatal pathway and a hyperdirect pathway to the subthalamic nucleus, respectively, which is known to exist in primates. Materials and Methods: Five female Göttingen minipigs were injected into the primary motor cortex (n = 4) and adjacent prefrontal cortex (n = 1) with the anterograde neuronal tracer, Biotinylated Dextran Amine (BDA). 4 weeks later the animals were sacrificed and the brains cryosectioned into 30 µm thick coronal sections for subsequent microscopic analysis. Results: The hyperdirect axonal connections from the primary motor cortex were seen to terminate in the dorsolateral STN, whereas the axonal projections from the prefrontal cortex terminated medially in the STN. Furthermore, striatal tracing from the motor cortex was especially prominent in the dorsolateral putamen and less so in the dorsolateral caudate nucleus. The prefrontal efferents were concentrated mainly in the caudate nucleus and to a smaller degree in the juxtacapsular dorsal putamen, but they were also found in the nucleus accumbens and ventral prefrontal cortex. Discussion: The organization of the Göttingen minipig basal ganglia circuitry is in accordance with previous descriptions in primates. The existence of a cortico-striatal and hyperdirect basal ganglia pathway in this non-primate, large animal model may accordingly permit further translational studies on STN-DBS induced neuroplasticity of major relevance for future DBS treatments.


Subject(s)
Deep Brain Stimulation , Motor Cortex , Subthalamic Nucleus , Animals , Female , Prefrontal Cortex , Primates , Swine , Swine, Miniature
10.
Front Hum Neurosci ; 15: 618626, 2021.
Article in English | MEDLINE | ID: mdl-33613212

ABSTRACT

Recording and manipulating neuronal ensemble activity is a key requirement in advanced neuromodulatory and behavior studies. Devices capable of both recording and manipulating neuronal activity brain-computer interfaces (BCIs) should ideally operate un-tethered and allow chronic longitudinal manipulations in the freely moving animal. In this study, we designed a new intracortical BCI feasible of telemetric recording and stimulating local gray and white matter of visual neural circuit after irradiation exposure. To increase the translational reliance, we put forward a Göttingen minipig model. The animal was stereotactically irradiated at the level of the visual cortex upon defining the target by a fused cerebral MRI and CT scan. A fully implantable neural telemetry system consisting of a 64 channel intracortical multielectrode array, a telemetry capsule, and an inductive rechargeable battery was then implanted into the visual cortex to record and manipulate local field potentials, and multi-unit activity. We achieved a 3-month stability of the functionality of the un-tethered BCI in terms of telemetric radio-communication, inductive battery charging, and device biocompatibility for 3 months. Finally, we could reliably record the local signature of sub- and suprathreshold neuronal activity in the visual cortex with high bandwidth without complications. The ability to wireless induction charging combined with the entirely implantable design, the rather high recording bandwidth, and the ability to record and stimulate simultaneously put forward a wireless BCI capable of long-term un-tethered real-time communication for causal preclinical circuit-based closed-loop interventions.

11.
Front Comput Neurosci ; 15: 783474, 2021.
Article in English | MEDLINE | ID: mdl-35145389

ABSTRACT

The human brain contains billions of neurons that flexibly interconnect to support local and global computational spans. As neuronal activity propagates through the neural medium, it approaches a critical state hedged between ordered and disordered system regimes. Recent work demonstrates that this criticality coincides with the small-world topology, a network arrangement that accommodates both local (subcritical) and global (supercritical) system properties. On one hand, operating near criticality is thought to offer several neurocomputational advantages, e.g., high-dynamic range, efficient information capacity, and information transfer fidelity. On the other hand, aberrations from the critical state have been linked to diverse pathologies of the brain, such as post-traumatic epileptiform seizures and disorders of consciousness. Modulation of brain activity, through neuromodulation, presents an attractive mode of treatment to alleviate such neurological disorders, but a tractable neural framework is needed to facilitate clinical progress. Using a variation on the generative small-world model of Watts and Strogatz and Kuramoto's model of coupled oscillators, we show that the topological and dynamical properties of the small-world network are divided into two functional domains based on the range of connectivity, and that these domains play distinct roles in shaping the behavior of the critical state. We demonstrate that short-range network connections shape the dynamics of the system, e.g., its volatility and metastability, whereas long-range connections drive the system state, e.g., a seizure. Together, these findings lend support to combinatorial neuromodulation approaches that synergistically normalize the system dynamic while mobilizing the system state.

12.
Sci Rep ; 10(1): 16223, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004849

ABSTRACT

Stereotactic radiosurgery (SRS) has proven an effective tool for the treatment of brain tumors, arteriovenous malformation, and functional conditions. However, radiation-induced therapeutic effect in viable cells in functional SRS is also suggested. Evaluation of the proposed modulatory effect of irradiation on neuronal activity without causing cellular death requires the knowledge of radiation dose tolerance at very small tissue volume. Therefore, we aimed to establish a porcine model to study the effects of ultra-high radiosurgical doses in small volumes of the brain. Five minipigs received focal stereotactic radiosurgery with single large doses of 40-100 Gy to 5-7.5 mm fields in the left primary motor cortex and the right subcortical white matter, and one animal remained as unirradiated control. The animals were followed-up with serial MRI, PET scans, and histology 6 months post-radiation. We observed a dose-dependent relation of the histological and MRI changes at 6 months post-radiation. The necrotic lesions were seen in the grey matter at 100 Gy and in white matter at 60 Gy. Furthermore, small volume radiosurgery at different dose levels induced vascular, as well as neuronal cell changes and glial cell remodeling.


Subject(s)
Brain/surgery , Necrosis , Radiation Injuries/pathology , Radiosurgery/adverse effects , Animals , Brain/pathology , Female , Imaging, Three-Dimensional/methods , Positron Emission Tomography Computed Tomography/methods , Radiation Injuries/diagnostic imaging , Radiation Injuries/etiology , Swine , Swine, Miniature
13.
Acta Neurobiol Exp (Wars) ; 80(3): 273-285, 2020.
Article in English | MEDLINE | ID: mdl-32990285

ABSTRACT

The discovery and application of induced pluripotent stem cells (iPSCs) provide a novel treatment modality for diseases, which remain incurable. Particularly, in the treatment of neurodegenerative diseases such as Parkinson's disease (PD), iPSC­technology holds an interesting prospect for replacement therapy. Currently, the prognostic improvement of PD is limited and relies on symptomatic treatment. However, the symptomatic dopamine­replacement therapies lose their long­duration responses, and novel regenerative treatment modalities are needed. Animal models have provided valuable information and identified pathogenic mechanisms underlying PD but the lack of models that recapitulate the complex pathophysiology of the disease postpones further development of novel therapeutics. This review summarizes the possible uses of iPSCs in PD and discusses the future investigations needed for iPSCs as a possible treatment of PD patients.


Subject(s)
Cell Differentiation/physiology , Induced Pluripotent Stem Cells/cytology , Neurodegenerative Diseases/pathology , Parkinson Disease/pathology , Parkinson Disease/therapy , Animals , Cell Transplantation/methods , Cell- and Tissue-Based Therapy/methods , Humans , Neurodegenerative Diseases/therapy
14.
Heliyon ; 5(11): e02892, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31844758

ABSTRACT

BACKGROUND: Adult onset growth hormone (GH) deficiency (AGDH) is a potentially underdiagnosed condition, caused by damage to the pituitary gland. AGHD is treated with growth hormone replacement therapy. A large variety of clinical symptoms and changes in the metabolic homeostasis can be observed and quantified. New large animal models are needed for future drug development. NEW METHOD: In this study, we evaluate methods for a new large non-primate animal model of GH deficiency in post pubertal Göttingen Minipigs (minipig). Lesions in the pituitary gland were made by stereotaxic monopolar thermo-coagulation guided by magnetic resonance imaging (MRI), and pituitary function was evaluated using insulin tolerance test (ITT) with measurements of growth hormone secretion induced by hypoglycemia. RESULTS: Lesions were successfully applied to the pituitary gland without any damage to surrounding tissue including the hypothalamus, which was confirmed by post-operative MRI and post mortem histology. Plasma levels of GH during ITT showed no decrease in secreted levels one week after surgery compared to levels obtained before surgery. COMPARISON WITH EXISTING METHODS: Compared to other GH insufficiency models, eloquent brain tissue is spared. Furthermore, alternatively to rodent models, a large animal model would allow the use of human intended equipment to evaluate disease. Using the minipig avoids social, economical and ethical issues, compared with primates. CONCLUSION: The lesions did not remove all GH production, but proof of concept is demonstrated. In addition, the ITT is presented as a safe and efficient method to diagnose GH deficiency in minipigs.

15.
J Neurosci Methods ; 317: 45-48, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30738881

ABSTRACT

BACKGROUND: Intrathecal (IT) delivery is useful in both basic research and clinical treatments. Here we aim to test a new minimally invasive distribution route to the subarachnoid space (SAS) and the flow of IT administrations. We placed a radioligand into SAS during positron emission tomography (PET) scanning as a proof of concept. NEW METHOD: We injected a 11C-labeled PET-tracer using a surgically placed catheter in the cisterna magna of anesthetized female pigs. The pigs were scanned for 1.5-2 hours in a PET/CT-scanner. The pressure from continuous infusion of artificial CSF (aCSF) promoted distribution of the tracer. The procedure was done under continuous intracranial pressure (ICP) monitoring. The catheter was made accessible both by externalization through the skin and through a subcutaneously placed sterile titanium port connected to the catheter. After image reconstruction, we used PMOD software to assess the tracer distribution throughout SAS. Internalisation of the catheter to a port enables survival studies. Previous studies performing ventriculography have placed a catheter trough brain cortex and parenchyma; such procedures may affect any behavioural or neurological evaluation, and have an increased risk of bleeding per- and post-operatively (Kaiser & Frühauf, 2007). RESULTS: The PET-CT visualized tracer was evenly distributed in the SAS. Furthermore, the ICP measurement made it possible to adjust infusion speed within acceptable pressure levels. CONCLUSION: This new method can be useful for testing distribution of PET-tracers, antibiotics, chemotherapeutics and a wide range of other pharmaceuticals targeting the CNS and spinal cord in large animal models, and potentially later in human.


Subject(s)
Image Processing, Computer-Assisted , Injections, Spinal/methods , Positron-Emission Tomography , Subarachnoid Space/diagnostic imaging , Subarachnoid Space/surgery , Animals , Carbon Radioisotopes/administration & dosage , Female , Injections, Spinal/instrumentation , Intracranial Pressure , Monitoring, Physiologic , Subarachnoid Space/metabolism , Sus scrofa
16.
Synapse ; 72(12): e22060, 2018 12.
Article in English | MEDLINE | ID: mdl-30009467

ABSTRACT

Parkinson's disease is characterized by a progressive loss of substantia nigra (SN) dopaminergic neurons and the formation of Lewy bodies containing accumulated alpha-synuclein (α-syn). The pathology of Parkinson's disease is associated with neuroinflammatory microglial activation, which may contribute to the ongoing neurodegeneration. This study investigates the in vivo microglial and dopaminergic response to overexpression of α-syn. We used positron emission tomography (PET) and the 18 kDa translocator protein radioligand, [11 C](R)PK11195, to image brain microglial activation and (+)-α-[11 C]dihydrotetrabenazine ([11 C]DTBZ), to measure vesicular monoamine transporter 2 (VMAT2) availability in Göttingen minipigs following injection with recombinant adeno-associated virus (rAAV) vectors expressing either mutant A53T α-syn or green fluorescent protein (GFP) into the SN (4 rAAV-α-syn, 4 rAAV-GFP, 5 non-injected control minipigs). We performed motor symptom assessment and immunohistochemical examination of tyrosine hydroxylase (TH) and transgene expression. Expression of GFP and α-syn was observed at the SN injection site and in the striatum. We observed no motor symptoms or changes in striatal [11 C]DTBZ binding potential in vivo or striatal or SN TH staining in vitro between the groups. The mean [11 C](R)PK11195 total volume of distribution was significantly higher in the basal ganglia and cortical areas of the α-syn group than the control animals. We conclude that mutant α-syn expression in the SN resulted in microglial activation in multiple sub- and cortical regions, while it did not affect TH stains or VMAT2 availability. Our data suggest that microglial activation constitutes an early response to accumulation of α-syn in the absence of dopamine neuron degeneration.


Subject(s)
Neuroglia/metabolism , Parkinson Disease/metabolism , alpha-Synuclein/genetics , Amides , Animals , Brain/diagnostic imaging , Brain/metabolism , Female , HEK293 Cells , Humans , Isoquinolines , Parkinson Disease/diagnostic imaging , Positron-Emission Tomography , Swine , Swine, Miniature , Tetrabenazine/analogs & derivatives , Vesicular Monoamine Transport Proteins/metabolism , alpha-Synuclein/metabolism
17.
J Anat ; 233(4): 411-420, 2018 10.
Article in English | MEDLINE | ID: mdl-30040118

ABSTRACT

The Göttingen minipig is being used increasingly in biomedical research. The anatomical structure of the porcine peripheral nervous system has been extensively characterized, but no equivalent to the dermatome map, which is so valuable in human neurophysiological research, has been created. We characterized the medullar segmental skin and muscle innervations of the minipig hind body, using neurophysiological methodology. Six adult minipigs underwent unilateral laminectomy from L2 to S3, exposing the nerve roots. The skin of the hind part of the body was divided into 36 predefined fields, based on anatomical landmarks for consistent reproducibility. We recorded the evoked potential in each exposed nerve root L2-S3 for cutaneous stimulation of each skin field, mapping the sensory innervation of the entire hind body. We subsequently recorded the motor response in seven predefined muscles during sequential stimulation of the L2-S3 nerve roots. We obtained a clear sensory evoked potential in the nerve roots during stimulation of the skin fields, allowing us to map the sensory innervation of the minipig hind body. Neurophysiological data from skin stimulation and muscle recordings enabled us to map the sensory innervation of the Göttingen minipig hind body and provide information about muscular innervation. The skin fields were sensory innervated by more than one root. The muscles each had one dominant root with minor contribution from neighboring roots. This is consistent with experimental data from human studies.


Subject(s)
Hindlimb/innervation , Lumbosacral Region/innervation , Muscle, Skeletal/innervation , Skin/innervation , Animals , Electrophysiology , Evoked Potentials, Somatosensory , Female , Swine , Swine, Miniature
18.
BMJ Case Rep ; 20182018 Apr 28.
Article in English | MEDLINE | ID: mdl-29705732

ABSTRACT

A 60-year-old male patient with a large infected cranial apex lesion was admitted with lethargy and mental status changes. The patient underwent evaluation with imaging studies, a skin biopsy, cultures with microscopy and a diagnostic burr hole. MRI and positron emission tomography/CT scan revealed a squamous cell carcinoma with ingrowth in the midline of the brain and subdural empyema infected with Streptococcus anginosus and Staphylococcus aureusHigh dose intravenous antibiotic treatment was initiated and the patient subsequently underwent a surgical resection of the carcinoma with a 1 cm margin of surrounding skin and skull. The defect was reconstructed using a titanium plate and a free microvascular lattisimus dorsi muscle flap then covered with a split skin graft.The patient received 37 radiation therapy sessions (66 GY) as adjuvant therapy.Intensive neurorehabilitation slowly improved an initial paraparesis. The 7-month follow-up revealed a satisfactory cosmetic result and residual gait impairment secondary to central nervous system invasion.


Subject(s)
Carcinoma, Squamous Cell/therapy , Dura Mater/surgery , Empyema, Subdural/therapy , Head and Neck Neoplasms/therapy , Plastic Surgery Procedures/methods , Scalp , Skin Neoplasms/therapy , Biopsy , Carcinoma, Squamous Cell/complications , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/pathology , Empyema, Subdural/drug therapy , Empyema, Subdural/etiology , Empyema, Subdural/microbiology , Head and Neck Neoplasms/complications , Head and Neck Neoplasms/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Positron-Emission Tomography , Radiation-Sensitizing Agents/therapeutic use , Scalp/diagnostic imaging , Scalp/pathology , Scalp/surgery , Skin Neoplasms/complications , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/pathology , Skin Transplantation , Skull/diagnostic imaging , Skull/surgery , Surgical Flaps
19.
J Neurosci Methods ; 285: 45-48, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28472679

ABSTRACT

BACKGROUND: Stereotaxic neurosurgery in large animals is used widely in different sophisticated models, where precision is becoming more crucial as desired anatomical target regions are becoming smaller. Individually calculated coordinates are necessary in large animal models with cortical and subcortical anatomical differences. NEW METHOD: We present a convenient method to make an MRI-visible skull fiducial for 3D MRI-based stereotaxic procedures in larger experimental animals. Plastic screws were filled with either copper-sulfate solution or MRI-visible paste from a commercially available cranial head marker. The screw fiducials were inserted in the animal skulls and T1 weighted MRI was performed allowing identification of the inserted skull marker. RESULTS: Both types of fiducial markers were clearly visible on the MRÍs. This allows high precision in the stereotaxic space. COMPARISON WITH EXISTING METHOD: The use of skull bone based fiducial markers gives high precision for both targeting and evaluation of stereotaxic systems. There are no metal artifacts and the fiducial is easily removed after surgery. CONCLUSION: The fiducial marker can be used as a very precise reference point, either for direct targeting or in evaluation of other stereotaxic systems.


Subject(s)
Fiducial Markers , Magnetic Resonance Imaging , Skull/diagnostic imaging , Skull/surgery , Stereotaxic Techniques , Animals , Copper Sulfate/therapeutic use , Fiducial Markers/standards , Imaging, Three-Dimensional , Models, Animal , Swine/surgery
20.
Acta Neurobiol Exp (Wars) ; 76(3): 199-211, 2016.
Article in English | MEDLINE | ID: mdl-27685773

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disorder, resulting from progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Neuroprotective therapies in PD are still not available, perhaps because animal models do not imitate the chronic and progressive nature of the clinical state of PD. To address this, we performed a feasibility study aimed at establishing a chronic non-primate large animal PD model in Göttingen minipigs based on continuous infusion of the neurotoxin 1-methyl-4-phenyl­1,2,3,6-tetrahydropyridine (MPTP). Twelve female Göttingen minipigs were divided into groups of 2-4 animals and implanted with infusion pumps for continuous intramuscular MPTP delivery of 4-24 mg MPTP/day for 11 weeks. The animals showed parkinsonian symptoms with bradykinesia, rigidity, coordination and chewing difficulties. Symptoms were stable in the 12 and 18 mg MPTP/day groups, whereas the remaining groups showed partial or full behavioral recovery. Digital gait analysis, high performance liquid chromatography (HPLC) measurements and stereological counts of tyrosine hydroxylase-positive (TH+) neurons in the SNc revealed a dose-related decrease in gait velocity, striatal metabolite levels and neuron numbers with increasing doses of MPTP. No neuronal inclusions were observed, but alpha-synuclein staining intensified with increased cumulative MPTP dosages. We conclude that this large-animal model of chronic MPTP administration in Göttingen minipigs shows trends of stable parkinsonian deficits at 18 mg MPTP/day in all modalities examined. This PD model shares many of the characteristics seen in patients and, although preliminary, holds considerable promise for future pre-clinical trials of neuroprotective therapies.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/administration & dosage , Disease Models, Animal , Neurotoxins/administration & dosage , Parkinsonian Disorders/chemically induced , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Antiparkinson Agents/pharmacology , Antiparkinson Agents/therapeutic use , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dopamine/metabolism , Dose-Response Relationship, Drug , Drinking/drug effects , Drug Administration Schedule , Drug Delivery Systems , Eating/drug effects , Female , Injections, Intramuscular , Levodopa/pharmacology , Levodopa/therapeutic use , Neurotoxins/pharmacology , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/pathology , Parkinsonian Disorders/physiopathology , Severity of Illness Index , Swine , Swine, Miniature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...