Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Otol Neurotol ; 45(6): 676-683, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38865727

ABSTRACT

HYPOTHESIS: Resonance frequency analysis (RFA) is a reliable, noninvasive method to assess the stability of bone-anchored hearing implants (BAHIs), although surgical-, implant-, and host-related factors can affect its outcome. BACKGROUND: BAHI plays an important role in restoring hearing function. However, implant- and host-related factors contribute to premature implant extrusion. To mitigate this, noninvasive methods to assess implant stability, along with a better understanding of factors contributing to BAHI failure, are needed. METHODS: We evaluated the utility of RFA to quantify implant stability in sawbone (bone mimicking material), 29 human cadaveric samples, and a prospective cohort of 29 pediatric and 27 adult participants, and identified factors associated with implant stability. To validate the use of RFA in BAHI, we compared RFA-derived implant stability quotient (ISQ) estimates to peak loads obtained from mechanical push-out testing. RESULTS: ISQ and peak loads were significantly correlated (Spearman rho = 0.48, p = 0.0088), and ISQ reliably predicted peak load up to 1 kN. We then showed that in cadaveric samples, abutment length, internal table bone volume, and donor age were significantly associated with implant stability. We validated findings in our prospective patient cohort and showed that minimally invasive Ponto surgery (MIPS; versus linear incision), longer implantation durations (>16 wk), older age (>25 yr), and shorter abutment lengths (≤10 mm) were associated with better implant stability. Finally, we characterized the short-term reproducibility of ISQ measurements in sawbone and patient implants. CONCLUSIONS: Together, our findings support the use of ISQ as a measure of implant stability and emphasize important considerations that impact implant stability, including surgical method, implant duration, age, and abutment lengths.


Subject(s)
Hearing Aids , Resonance Frequency Analysis , Humans , Male , Female , Adult , Middle Aged , Child , Adolescent , Prospective Studies , Bone-Anchored Prosthesis , Young Adult , Aged , Suture Anchors , Cadaver
2.
J Mech Behav Biomed Mater ; 153: 106468, 2024 May.
Article in English | MEDLINE | ID: mdl-38493561

ABSTRACT

A 2D plane strain extended finite element method (XFEM) model was developed to simulate three-point bending fracture toughness tests for human bone conducted in hydrated and dehydrated conditions. Bone microstructures and crack paths observed by micro-CT imaging were simulated using an XFEM damage model. Critical damage strains for the osteons, matrix, and cement lines were deduced for both hydrated and dehydrated conditions and it was found that dehydration decreases the critical damage strains by about 50%. Subsequent parametric studies using the various microstructural models were performed to understand the impact of individual critical damage strain variations on the fracture behavior. The study revealed the significant impact of the cement line critical damage strains on the crack paths and fracture toughness during the early stages of crack growth. Furthermore, a significant sensitivity of crack growth resistance and crack paths on critical strain values of the cement lines was found to exist for the hydrated environments where a small change in critical strain values of the cement lines can alter the crack path to give a significant reduction in fracture resistance. In contrast, in the dehydrated state where toughness is low, the sensitivity to changes in critical strain values of the cement lines is low. Overall, our XFEM model was able to provide new insights into how dehydration affects the micromechanisms of fracture in bone and this approach could be further extended to study the effects of aging, disease, and medical therapies on bone fracture.


Subject(s)
Dehydration , Fractures, Bone , Humans , Models, Biological , Cortical Bone/diagnostic imaging , Bone and Bones , Fractures, Bone/diagnostic imaging
3.
Bone ; 181: 117041, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38325648

ABSTRACT

Chronic heavy alcohol consumption may influence the skeleton by suppressing intracortical bone remodeling which may impact the quality of bone and its mechanical properties. However, this aspect has not been thoroughly assessed in either humans or animal models whose cortical bone microstructure resembles the microstructure of human cortical bone. The current study is the first to investigate the effects of chronic heavy alcohol consumption on various mechanical properties of bone in a non-human primate model with intracortical remodeling. Male rhesus macaques (5.3 years old at the initiation of treatment) were induced to drink alcohol and then given the choice to voluntarily self-administer water or ethanol (4 % w/v) for approximately 14 months, followed by three abstinence phases (lasting 34, 41, and 39-46 days) with approximately 3 months of ethanol access in between. During the initial 14 months of open-access, monkeys in the alcohol group consumed an average of 2.9 ± 0.8 g/kg/d ethanol (mean ± SD) resulting in a blood ethanol concentration of 89 ± 47 mg/dl in longitudinal samples taken at 7 h after the daily sessions began. To understand the impact of alcohol consumption on material properties, various mechanical tests were conducted on the distal tibia diaphysis of 2-5 monkeys per test group, including dynamic mechanical analysis (DMA) testing, nano-indentation, microhardness testing, compression testing, and fracture resistance curve (R-curve) testing. Additionally, compositional analyses were performed using Fourier-transform infrared (FTIR) spectroscopy. Significant differences in microhardness, compressive stress-strain response, and composition were not observed with alcohol consumption, and only minor differences were detected in hardness and elastic modulus of the matrix and osteons from nanoindentation. Furthermore, the R-curves of both groups overlapped, with similar crack initiation toughness, despite a significant decrease in crack growth toughness (p = 0.032) with alcohol consumption. However, storage modulus (p = 0.029) and loss factor (p = 0.015) from DMA testing were significantly increased in the alcohol group compared to the control group, while loss modulus remained unchanged. These results indicate that heavy alcohol consumption may have only a minor influence on the material properties and the composition of cortical bone in young adult male rhesus macaques.


Subject(s)
Bone and Bones , Cortical Bone , Animals , Male , Macaca mulatta , Alcohol Drinking , Ethanol
4.
J Biomed Mater Res B Appl Biomater ; 112(1): e35356, 2024 01.
Article in English | MEDLINE | ID: mdl-38247241

ABSTRACT

Sterilization of structural bone allografts is a critical process prior to their clinical use in large cortical bone defects. Gamma irradiation protocols are known to affect tissue integrity in a dose dependent manner. Alternative sterilization treatments, such as supercritical carbon dioxide (SCCO2 ), are gaining popularity due to advantages such as minimal exposure to denaturants, the lack of toxic residues, superior tissue penetration, and minor impacts on mechanical properties including strength and stiffness. The impact of SCCO2 on the fracture toughness of bone tissue, however, remains unknown. Here, we evaluate crack initiation and growth toughness after 2, 6, and 24 h SCCO2 -treatment using Novakill™ and ethanol as additives on ~11 samples per group obtained from a pair of femur diaphyses of a canine. All mechanical testing was performed at ambient air after 24 h soaking in Hanks' balanced salt solution (HBSS). Results show no statistically significant difference in the failure characteristics of the Novakill™-treated groups whereas crack growth toughness after 6 and 24 h of treatment with ethanol significantly increases by 37% (p = .010) and 34% (p = .038), respectively, compared to an untreated control group. In contrast, standard 25 kGy gamma irradiation causes significantly reduced crack growth resistance by 40% (p = .007) compared to untreated bone. FTIR vibrational spectroscopy, conducted after testing, reveals a consistent trend of statistically significant differences (p < .001) with fracture toughness. These trends align with variations in the ratios of enzymatic mature to immature crosslinks in the collagen structure, suggesting a potential association with fracture toughness. Additional Raman spectroscopy after testing shows a similar trend with statistically significant differences (p < .005), which further supports that collagen structural changes occur in the SCF-treated groups with ethanol after 6 and 24 h. Our work reveals the benefits of SCCO2 sterilization compared to gamma irradiation.


Subject(s)
Carbon Dioxide , Fractures, Bone , Animals , Dogs , Carbon Dioxide/pharmacology , Ethanol/pharmacology , Bone and Bones , Cortical Bone , Collagen/pharmacology
5.
JBMR Plus ; 7(12): e10839, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38130774

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a metabolic disease affecting bone tissue and leading to increased fracture risk in men and women, independent of bone mineral density (BMD). Thus, bone material quality (i.e., properties that contribute to bone toughness but are not attributed to bone mass or quantity) is suggested to contribute to higher fracture risk in diabetic patients and has been shown to be altered. Fracture toughness properties are assumed to decline with aging and age-related disease, while toughness of human T2DM bone is mostly determined from compression testing of trabecular bone. In this case-control study, we determined fracture resistance in T2DM cortical bone tissue from male individuals in combination with a multiscale approach to assess bone material quality indices. All cortical bone samples stem from male nonosteoporotic individuals and show no significant differences in microstructure in both groups, control and T2DM. Bone material quality analyses reveal that both control and T2DM groups exhibit no significant differences in bone matrix composition assessed with Raman spectroscopy, in BMD distribution determined with quantitative back-scattered electron imaging, and in nanoscale local biomechanical properties assessed via nanoindentation. Finally, notched three-point bending tests revealed that the fracture resistance (measured from the total, elastic, and plastic J-integral) does not significantly differ in T2DM and control group, when both groups exhibit no significant differences in bone microstructure and material quality. This supports recent studies suggesting that not all T2DM patients are affected by a higher fracture risk but that individual risk profiles contribute to fracture susceptibility, which should spur further research on improving bone material quality assessment in vivo and identifying risk factors that increase bone fragility in T2DM. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

7.
J Mech Behav Biomed Mater ; 145: 106034, 2023 09.
Article in English | MEDLINE | ID: mdl-37494816

ABSTRACT

Microstructural and compositional changes that occur due to aging, pathological conditions, or pharmacological treatments alter cortical bone fracture resistance. However, the relative importance of these changes to the fracture resistance of cortical bone has not been quantified in detail. In this technical note, we developed an integrated experimental-computational framework utilizing human femoral cortical bone biopsies to advance the understanding of how fracture resistance of cortical bone is modulated due to modifications in its microstructure and material properties. Four human biopsy samples from individuals with varying fragility fracture history and osteoporosis treatment status were converted to finite element models incorporating specimen-specific material properties and were analyzed using fracture mechanics-based modeling. The results showed that cement line density and osteonal volume had a significant effect on crack volume. The removal of cement lines substantially increased the crack volume in the osteons and interstitial bone, representing straight crack growth, compared to models with cement lines due to the lack of crack deflection in the models without cement lines. Crack volume in the osteons and interstitial bone increased when mean elastic modulus and ultimate strength increased and mean fracture toughness decreased. Crack volume in the osteons and interstitial bone was reduced when material property heterogeneity was incorporated in the models. Although both the microstructure and the heterogeneity of the material properties of the cortical bone independently increased the fracture toughness, the relative contribution of the microstructure was more significant. The integrated experimental-computational framework developed here can identify the most critical microscale features of cortical bone modulated by pathological processes or pharmacological treatments that drive changes in fracture resistance and improve our understanding of the relative influence of microstructure and material properties on fracture resistance of cortical bone.


Subject(s)
Fractures, Bone , Models, Biological , Humans , Finite Element Analysis , Cortical Bone/pathology , Bone and Bones/pathology , Fractures, Bone/pathology
8.
Science ; 378(6623): 978-983, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36454850

ABSTRACT

CrCoNi-based medium- and high-entropy alloys display outstanding damage tolerance, especially at cryogenic temperatures. In this study, we examined the fracture toughness values of the equiatomic CrCoNi and CrMnFeCoNi alloys at 20 kelvin (K). We found exceptionally high crack-initiation fracture toughnesses of 262 and 459 megapascal-meters½ (MPa·m½) for CrMnFeCoNi and CrCoNi, respectively; CrCoNi displayed a crack-growth toughness exceeding 540 MPa·m½ after 2.25 millimeters of stable cracking. Crack-tip deformation structures at 20 K are quite distinct from those at higher temperatures. They involve nucleation and restricted growth of stacking faults, fine nanotwins, and transformed epsilon martensite, with coherent interfaces that can promote both arrest and transmission of dislocations to generate strength and ductility. We believe that these alloys develop fracture resistance through a progressive synergy of deformation mechanisms, dislocation glide, stacking-fault formation, nanotwinning, and phase transformation, which act in concert to prolong strain hardening that simultaneously elevates strength and ductility, leading to exceptional toughness.

9.
J Bone Miner Res ; 37(11): 2259-2276, 2022 11.
Article in English | MEDLINE | ID: mdl-36112316

ABSTRACT

Diabetes mellitus (DM) is an emerging metabolic disease, and the management of diabetic bone disease poses a serious challenge worldwide. Understanding the underlying mechanisms leading to high fracture risk in DM is hence of particular interest and urgently needed to allow for diagnosis and treatment optimization. In a case-control postmortem study, the whole 12th thoracic vertebra and cortical bone from the mid-diaphysis of the femur from male individuals with type 1 diabetes mellitus (T1DM) (n = 6; 61.3 ± 14.6 years), type 2 diabetes mellitus (T2DM) (n = 11; 74.3 ± 7.9 years), and nondiabetic controls (n = 18; 69.3 ± 11.5) were analyzed with clinical and ex situ imaging techniques to explore various bone quality indices. Cortical collagen fibril deformation was measured in a synchrotron setup to assess changes at the nanoscale during tensile testing until failure. In addition, matrix composition was analyzed including determination of cross-linking and non-crosslinking advanced glycation end-products like pentosidine and carboxymethyl-lysine. In T1DM, lower fibril deformation was accompanied by lower mineralization and more mature crystalline apatite. In T2DM, lower fibril deformation concurred with a lower elastic modulus and tendency to higher accumulation of non-crosslinking advanced glycation end-products. The observed lower collagen fibril deformation in diabetic bone may be linked to altered patterns mineral characteristics in T1DM and higher advanced glycation end-product accumulation in T2DM. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Male , Humans , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/diagnostic imaging , Diabetes Mellitus, Type 2/metabolism , Glycation End Products, Advanced/metabolism , Bone and Bones/metabolism , Collagen/metabolism
10.
J Mech Behav Biomed Mater ; 129: 105155, 2022 05.
Article in English | MEDLINE | ID: mdl-35313188

ABSTRACT

Water is a crucial component of bone, affecting the interplay of collagen and minerals and contributing to bone's high strength and ductility. Dehydration has been shown to significantly effect osseous mechanical properties; however, studies comparing the effects of various dehydrating environments on fracture toughness of bone are scarce. Accordingly, the crack resistance curve (R-curve) behavior of human and sheep cortical bone was characterized in a bio-bath, in ambient pressure air, and in scanning electron microscopes (SEMs) under three different environmental conditions (water vapor pressure, air pressure, and high-vacuum). The aim of this work was to better understand the impact of test environment on both intrinsic and extrinsic toughening and hence crack initiation toughness, K0 and crack growth resistance, dK/dΔa. Results show significantly lower K0 values for samples that were tested inside SEMs combined with pronounced extrinsic toughening through microcracking and crack path deflections out of the mode I plane. Importantly, all three SEM test environments gave similar results, and thus it does not matter which type of SEM is used. Ex situ testing of hydrated samples revealed similar K0 for both environments but elevated crack growth resistance for testing in ambient air relative to the bio-bath. Our data reveals the experimental difficulties to directly observe microscale crack propagation in cortical bone that resembles the in vivo situation. Ex situ testing immersed in Hanks' Balanced Salt Solution (HBSS) with subsequent crack path analysis, while tedious, is thought to presents the most realistic picture of the in vivo structure-fracture property relations in biological tissue.


Subject(s)
Bone and Bones , Fractures, Bone , Animals , Collagen , Cortical Bone , Sheep , Stress, Mechanical , Tensile Strength
11.
J Mech Behav Biomed Mater ; 110: 103888, 2020 10.
Article in English | MEDLINE | ID: mdl-32957195

ABSTRACT

In order to understand the fracture toughness anisotropy of avian eggshells, we have investigated eggshells of the emu (Dromaius novaehollandiae) whereby the large size (~13 cm × 9.5 cm) enabled the fabrication of beam samples in various orientations. The emu eggshell was found to have a hierarchical microstructure similar to chicken eggshell, with the only significant difference being the absence of a continuous cuticle layer. Emu eggshell was found to have significantly lower strength when samples were tested in the outwards direction (i.e., a crack initiates on the inside of the shell and propagates towards the outer surface) as compared to the inwards testing direction. Furthermore, samples that were oriented parallel to the egg axis (i.e., the longitudinal direction) and tested inwards showed higher strength, ~24 MPa, compared to the samples that were made from the latitudinal orientation, ~20 MPa. Independent of orientation, the outwards testing direction resulted in strength values of ~15 MPa. The fracture toughness of the emu eggshell for cracking in the circumferential direction was ~0.3 MPa√m, independent of sample orientation, and this value was comparable to the fracture toughness of chicken eggshell tested in the same orientation. In the radial outwards direction, however, the fracture toughness was ~80% lower (~0.06 MPa√m) than in the circumferential direction. The low fracture toughness for this orientation was associated with the separation of the highly oriented calcite crystals in the mammillary cone layer of the eggshell structure which is easier compared to calcite crystal fracture. The large anisotropy in fracture toughness is thought to allow for easy escape of the chick while simultaneously protecting the embryo during development.


Subject(s)
Egg Shell , Fractures, Bone , Animals , Anisotropy , Calcium Carbonate , Chickens
12.
Nat Commun ; 11(1): 826, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32047160

ABSTRACT

Strategies involving metastable phases have been the basis of the design of numerous alloys, yet research on metastable high-entropy alloys is still in its infancy. In dual-phase high-entropy alloys, the combination of local chemical environments and loading-induced crystal structure changes suggests a relationship between deformation mechanisms and chemical atomic distribution, which we examine in here in a Cantor-like Cr20Mn6Fe34Co34Ni6 alloy, comprising both face-centered cubic (fcc) and hexagonal closed packed (hcp) phases. We observe that partial dislocation activities result in stable three-dimensional stacking-fault networks. Additionally, the fraction of the stronger hcp phase progressively increases during plastic deformation by forming at the stacking-fault network boundaries in the fcc phase, serving as the major source of strain hardening. In this context, variations in local chemical composition promote a high density of Lomer-Cottrell locks, which facilitate the construction of the stacking-fault networks to provide nucleation sites for the hcp phase transformation.

13.
Adv Sci (Weinh) ; 6(12): 1900287, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31380168

ABSTRACT

The osseous sword of a swordfish (Xiphias gladius) is specialized to incapacitate prey with stunning blows. Considering the sword's growth and maturation pattern, aging from the sword's base to the tip, while missing a mechanosensitive osteocytic network, an in-depth understanding of its mechanical properties and bone quality is lacking. Microstructural, compositional, and nanomechanical characteristics of the bone along the sword are investigated to reveal structural mechanisms accounting for its exceptional mechanical competence. The degree of mineralization, homogeneity, and particle size increase from the base toward the tip, reflecting aging along its length. Fracture experiments reveal that crack-growth toughness vastly decreases at the highly and homogeneously mineralized tip, suggesting the importance of aging effects. Initiation toughness, however, is unchanged suggesting that aging effects on this hierarchical level are counteracted by constant mineral/fibril interaction. In conclusion, the sword of the swordfish provides an excellent model reflecting base-to-tip-wise aging of bone, as indicated by increasing mineralization and decreasing crack-growth toughness toward the tip. The hierarchical, structural, and compositional changes along the sword reflect peculiar prerequisites needed for resisting high mechanical loads. Further studies on advanced teleosts bone tissue may help to unravel structure-function relationships of heavily loaded skeletons lacking mechanosensing cells.

14.
Nat Commun ; 10(1): 961, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30814502

ABSTRACT

Bioinspired ceramics with micron-scale ceramic "bricks" bonded by a metallic "mortar" are projected to result in higher strength and toughness ceramics, but their processing is challenging as metals do not typically wet ceramics. To resolve this issue, we made alumina structures using rapid pressureless infiltration of a zirconium-based bulk-metallic glass mortar that reactively wets the surface of freeze-cast alumina preforms. The mechanical properties of the resulting Al2O3 with a glass-forming compliant-phase change with infiltration temperature and ceramic content, leading to a trade-off between flexural strength (varying from 89 to 800 MPa) and fracture toughness (varying from 4 to more than 9 MPa·m½). The high toughness levels are attributed to brick pull-out and crack deflection along the ceramic/metal interfaces. Since these mechanisms are enabled by interfacial failure rather than failure within the metallic mortar, the potential for optimizing these bioinspired materials for damage tolerance has still not been fully realized.

15.
J Bone Miner Res ; 34(8): 1461-1472, 2019 08.
Article in English | MEDLINE | ID: mdl-30913317

ABSTRACT

Bone fracture risk is influenced by bone quality, which encompasses bone's composition as well as its multiscale organization and architecture. Aging and disease deteriorate bone quality, leading to reduced mechanical properties and higher fracture incidence. Largely unexplored is how bone quality and mechanical competence progress during longitudinal bone growth. Human femoral cortical bone was acquired from fetal (n = 1), infantile (n = 3), and 2- to 14-year-old cases (n = 4) at the mid-diaphysis. Bone quality was assessed in terms of bone structure, osteocyte characteristics, mineralization, and collagen orientation. The mechanical properties were investigated by measuring tensile deformation at multiple length scales via synchrotron X-ray diffraction. We find dramatic differences in mechanical resistance with age. Specifically, cortical bone in 2- to 14-year-old cases exhibits a 160% greater stiffness and 83% higher strength than fetal/infantile cases. The higher mechanical resistance of the 2- to 14-year-old cases is associated with advantageous bone quality, specifically higher bone volume fraction, better micronscale organization (woven versus lamellar), and higher mean mineralization compared with fetal/infantile cases. Our study reveals that bone quality is superior after remodeling/modeling processes convert the primary woven bone structure to lamellar bone. In this cohort of female children, the microstructural differences at the femoral diaphysis were apparent between the 1- to 2-year-old cases. Indeed, the lamellar bone in 2- to 14-year-old cases had a superior structural organization (collagen and osteocyte characteristics) and composition for resisting deformation and fracture than fetal/infantile bone. Mechanistically, the changes in bone quality during longitudinal bone growth lead to higher fracture resistance because collagen fibrils are better aligned to resist tensile forces, while elevated mean mineralization reinforces the collagen scaffold. Thus, our results reveal inherent weaknesses of the fetal/infantile skeleton signifying its inferior bone quality. These results have implications for pediatric fracture risk, as bone produced at ossification centers during children's longitudinal bone growth could display similarly weak points. © 2019 American Society for Bone and Mineral Research.


Subject(s)
Aging , Bone Density , Bone Development , Femur/growth & development , Adolescent , Child, Preschool , Female , Humans , Infant , Infant, Newborn , X-Ray Microtomography
16.
J Bone Miner Res ; 33(6): 1066-1075, 2018 06.
Article in English | MEDLINE | ID: mdl-29342321

ABSTRACT

Adults with type 2 diabetes (T2D) have a higher fracture risk for a given bone quantity, but the mechanisms remain unclear. Using a rat model of polygenic obese T2D, we demonstrate that diabetes significantly reduces whole-bone strength for a given bone mass (µCT-derived BMC), and we quantify the roles of T2D-induced deficits in material properties versus bone structure; ie, geometry and microarchitecture. Lumbar vertebrae and ulnae were harvested from 6-month-old lean Sprague-Dawley rats, obese Sprague-Dawley rats, and diabetic obese UCD-T2DM rats (diabetic for 69 ± 7 days; blood glucose >200 mg/dL). Both obese rats and those with diabetes had reduced whole-bone strength for a given BMC. In obese rats, this was attributable to structural deficits, whereas in UCD-T2DM rats, this was attributable to structural deficits and to deficits in tissue material properties. For the vertebra, deficits in bone structure included thinner and more rod-like trabeculae; for the ulnae, these deficits included inefficient distribution of bone mass to resist bending. Deficits in ulnar material properties in UCD-T2DM rats were associated with increased non-enzymatic crosslinking and impaired collagen fibril deformation. Specifically, small-angle X-ray scattering revealed that diabetes reduced collagen fibril ultimate strain by 40%, and those changes coincided with significant reductions in the elastic, yield, and ultimate tensile properties of the bone tissue. Importantly, the biomechanical effects of these material property deficits were substantial. Prescribing diabetes-specific tissue yield strains in high-resolution finite element models reduced whole-bone strength by a similar amount (and in some cases a 3.4-fold greater amount) as the structural deficits. These findings provide insight into factors that increase bone fragility for a given bone mass in T2D; not only does diabetes associate with less biomechanically efficient bone structure, but diabetes also reduces tissue ductility by limiting collagen fibril deformation, and in doing so, reduces the maximum load capacity of the bone. © 2018 American Society for Bone and Mineral Research.


Subject(s)
Bone and Bones/pathology , Diabetes Mellitus, Type 2/pathology , Animals , Biomechanical Phenomena , Bone and Bones/diagnostic imaging , Bone and Bones/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Disease Models, Animal , Finite Element Analysis , Glycation End Products, Advanced/metabolism , Obesity/pathology , Organ Size , Rats, Sprague-Dawley , X-Ray Microtomography
17.
Cell Rep ; 21(9): 2585-2596, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29186693

ABSTRACT

Poor bone quality contributes to bone fragility in diabetes, aging, and osteogenesis imperfecta. However, the mechanisms controlling bone quality are not well understood, contributing to the current lack of strategies to diagnose or treat bone quality deficits. Transforming growth factor beta (TGF-ß) signaling is a crucial mechanism known to regulate the material quality of bone, but its cellular target in this regulation is unknown. Studies showing that osteocytes directly remodel their perilacunar/canalicular matrix led us to hypothesize that TGF-ß controls bone quality through perilacunar/canalicular remodeling (PLR). Using inhibitors and mice with an osteocyte-intrinsic defect in TGF-ß signaling (TßRIIocy-/-), we show that TGF-ß regulates PLR in a cell-intrinsic manner to control bone quality. Altogether, this study emphasizes that osteocytes are key in executing the biological control of bone quality through PLR, thereby highlighting the fundamental role of osteocyte-mediated PLR in bone homeostasis and fragility.


Subject(s)
Bone and Bones/cytology , Bone and Bones/metabolism , Osteocytes/metabolism , Transforming Growth Factor beta/metabolism , Animals , Bone Remodeling/physiology , Cell Line , Immunohistochemistry , Male , Mice , Signal Transduction/physiology
18.
Proc Natl Acad Sci U S A ; 114(33): 8722-8727, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28760963

ABSTRACT

Bisphosphonates are the most widely prescribed pharmacologic treatment for osteoporosis and reduce fracture risk in postmenopausal women by up to 50%. However, in the past decade these drugs have been associated with atypical femoral fractures (AFFs), rare fractures with a transverse, brittle morphology. The unusual fracture morphology suggests that bisphosphonate treatment may impair toughening mechanisms in cortical bone. The objective of this study was to compare the compositional and mechanical properties of bone biopsies from bisphosphonate-treated patients with AFFs to those from patients with typical osteoporotic fractures with and without bisphosphonate treatment. Biopsies of proximal femoral cortical bone adjacent to the fracture site were obtained from postmenopausal women during fracture repair surgery (fracture groups, n = 33) or total hip arthroplasty (nonfracture groups, n = 17). Patients were allocated to five groups based on fracture morphology and history of bisphosphonate treatment [+BIS Atypical: n = 12, BIS duration: 8.2 (3.0) y; +BIS Typical: n = 10, 7.7 (5.0) y; +BIS Nonfx: n = 5, 6.4 (3.5) y; -BIS Typical: n = 11; -BIS Nonfx: n = 12]. Vibrational spectroscopy and nanoindentation showed that tissue from bisphosphonate-treated women with atypical fractures was harder and more mineralized than that from bisphosphonate-treated women with typical osteoporotic fractures. In addition, fracture mechanics measurements showed that tissue from patients treated with bisphosphonates had deficits in fracture toughness, with lower crack-initiation toughness and less crack deflection at osteonal boundaries than that of bisphosphonate-naïve patients. Together, these results suggest a deficit in intrinsic and extrinsic toughening mechanisms, which contribute to AFFs in patients treated with long-term bisphosphonates.


Subject(s)
Bone Density Conservation Agents/therapeutic use , Diphosphonates/therapeutic use , Femur/drug effects , Osteoporotic Fractures/drug therapy , Aged , Aged, 80 and over , Bone Density/drug effects , Female , Humans , Osteoporosis/drug therapy , Postmenopause/drug effects
19.
Nat Commun ; 8: 15942, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28665405

ABSTRACT

Nuclear-grade graphite is a critically important high-temperature structural material for current and potentially next generation of fission reactors worldwide. It is imperative to understand its damage-tolerant behaviour and to discern the mechanisms of damage evolution under in-service conditions. Here we perform in situ mechanical testing with synchrotron X-ray computed micro-tomography at temperatures between ambient and 1,000 °C on a nuclear-grade Gilsocarbon graphite. We find that both the strength and fracture toughness of this graphite are improved at elevated temperature. Whereas this behaviour is consistent with observations of the closure of microcracks formed parallel to the covalent-sp2-bonded graphene layers at higher temperatures, which accommodate the more than tenfold larger thermal expansion perpendicular to these layers, we attribute the elevation in strength and toughness primarily to changes in the residual stress state at 800-1,000 °C, specifically to the reduction in significant levels of residual tensile stresses in the graphite that are 'frozen-in' following processing.

20.
Nat Commun ; 8: 14390, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28218267

ABSTRACT

Combinations of high strength and ductility are hard to attain in metals. Exceptions include materials exhibiting twinning-induced plasticity. To understand how the strength-ductility trade-off can be defeated, we apply in situ, and aberration-corrected scanning, transmission electron microscopy to examine deformation mechanisms in the medium-entropy alloy CrCoNi that exhibits one of the highest combinations of strength, ductility and toughness on record. Ab initio modelling suggests that it has negative stacking-fault energy at 0K and high propensity for twinning. With deformation we find that a three-dimensional (3D) hierarchical twin network forms from the activation of three twinning systems. This serves a dual function: conventional twin-boundary (TB) strengthening from blockage of dislocations impinging on TBs, coupled with the 3D twin network which offers pathways for dislocation glide along, and cross-slip between, intersecting TB-matrix interfaces. The stable twin architecture is not disrupted by interfacial dislocation glide, serving as a continuous source of strength, ductility and toughness.

SELECTION OF CITATIONS
SEARCH DETAIL