Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Histochem Cell Biol ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600336

ABSTRACT

Characterization of inflammation in chronic rhinosinusitis with (CRSwNP) and without nasal polyps (CRSsNP) is an ongoing research process. To overcome limitations of current cytologic techniques, we investigated whether immunofluorescence multiplex image cytometry could quantify intact neutrophils, eosinophils, and other immune cells in solid upper airway mucosa. We used a four-channel immunofluorescence-microscopy technique for the simultaneous detection of the leukocyte marker CD45, the neutrophil marker myeloperoxidase, two eosinophil markers, i.e., major basic protein and eosinophil peroxidase, and DAPI (4',6-diamidin-2-phenylindole), in formalin-fixed paraffin-embedded upper airway tissue samples of patients with CRSwNP and CRSsNP, as well as of patients free of CRS with inferior turbinate hypertrophy (controls). Image acquisition and analysis were performed with TissueFAXS and StrataQuest (TissueGnostics, Vienna, Austria), respectively. Positive and negative immunostaining were differentiated with a specific fluorescence signal/background signal ratio. Isotype controls were used as negative controls. In six controls, nine patients with CRSsNP, and 11 patients with CRSwNP, the median area scanned and median cell count per patient were 14.2 mm2 and 34,356, respectively. In CRSwNP, the number of eosinophils was three times higher (23%) than that of neutrophils (7%). Three times more immune cells were encountered in CRSwNP (33%) compared to CRSsNP (11%). In controls, inflammation was balanced between the epithelial layer and lamina propria, in contrast to CRS (three times more pronounced inflammation in the lamina propria). The quantification of intact neutrophils, eosinophils, and other immune cells in solid tissue with undisrupted architecture seems feasible with immunofluorescence multiplex image cytometry.

2.
J Anat ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613211

ABSTRACT

Auditory sensitivity and frequency resolution depend on the optimal transfer of sound-induced vibrations from the basilar membrane (BM) to the inner hair cells (IHCs), the principal auditory receptors. There remains a paucity of information on how this is accomplished along the frequency range in the human cochlea. Most of the current knowledge is derived either from animal experiments or human tissue processed after death, offering limited structural preservation and optical resolution. In our study, we analyzed the cytoarchitecture of the human cochlear partition at different frequency locations using high-resolution microscopy of uniquely preserved normal human tissue. The results may have clinical implications and increase our understanding of how frequency-dependent acoustic vibrations are carried to human IHCs. A 1-micron-thick plastic-embedded section (mid-modiolar) from a normal human cochlea uniquely preserved at lateral skull base surgery was analyzed using light and transmission electron microscopy (LM, TEM). Frequency locations were estimated using synchrotron radiation phase-contrast imaging (SR-PCI). Archival human tissue prepared for scanning electron microscopy (SEM) and super-resolution structured illumination microscopy (SR-SIM) were also used and compared in this study. Microscopy demonstrated great variations in the dimension and architecture of the human cochlear partition along the frequency range. Pillar cell geometry was closely regulated and depended on the reticular lamina slope and tympanic lip angle. A type II collagen-expressing lamina extended medially from the tympanic lip under the inner sulcus, here named "accessory basilar membrane." It was linked to the tympanic lip and inner pillar foot, and it may contribute to the overall compliance of the cochlear partition. Based on the findings, we speculate on the remarkable microanatomic inflections and geometric relationships which relay different sound-induced vibrations to the IHCs, including their relevance for the evolution of human speech reception and electric stimulation with auditory implants. The inner pillar transcellular microtubule/actin system's role of directly converting vibration energy to the IHC cuticular plate and ciliary bundle is highlighted.

3.
BMC Cancer ; 23(1): 1154, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012597

ABSTRACT

BACKGROUND: Epithelial, connective tissue and immune cells contribute in various ways to the pathophysiology of HPV positive (HPV+) and HPV negative (HPV-) oropharyngeal squamous cell carcinoma (OPSCC). We aimed to investigate the abundance of these cell lineages and their coexpression patterns in patients with HPV + and HPV- OPSCC. METHODS: We used a 4-channel immunofluorescence-microscopy technique for the simultaneous detection of three direct-conjugated antibodies (pancytokeratin, vimentin and CD45/CD18) and DAPI (4',6-Diamidin-2-phenylindole) in formalin fixed paraffin-embedded tissue samples (FFPE) of patients with HPV + and HPV- OPSCC, and of control patients. Image acquisition and analysis were performed with TissueFAXS and StrataQuest (TissueGnostics, Vienna, Austria), respectively, in tumor cell clusters/stroma in OPSCC specimens and epithelial layer/lamina propria in control specimens. Cell populations were created based on antibodies' coexpression patterns. Isotype and positive controls were examined for plausibility. RESULTS: The proportion of cells of epithelial differentiation in tumor cell clusters was higher in HPV + OPSCC (55%) than in HPV- OPSCC samples (44%). The proportion of connective tissue cells in tumor cell cluster was lower in HPV + OPSCC patients (18%) than in HPV- OPSCC patients (26%). The proportion of immune cells in tumor cell clusters was higher in HPV + OPSCC patients (25%) than in HPV- OPSCC patients (18%). The percentage of anaplastic, potentially de-differentiated cells, was 2% in control patients, and it was higher in HPV- OPSCC (21%) than in HPV + OPSCC samples (6%). CONCLUSIONS: This study provided the first quantitative data for the abundance of cells of epithelial, connective tissue and immune differentiation, in patients with OPSCC and control patients. The abundance of these different crucial cell populations was consistently originating from the same tissue sample. De-differentiation of tumor cells was higher in HPV- OPSCC than in HPV + OPSCC. In tumor cells clusters, the antitumoral host immune response was higher in HPV + OPSCC than in HPV- OPSCC, whereas the fibroblast response was higher in HPV- OPSCC than in HPV + OPSCC. This study contributed to the understanding of histopathologic differences between HPV + OPSCC and HPV- OPSCC patients.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Oropharyngeal Neoplasms , Papillomavirus Infections , Humans , Carcinoma, Squamous Cell/pathology , Oropharyngeal Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck , Fluorescent Antibody Technique , Cell Differentiation , Papillomaviridae
4.
J Assoc Res Otolaryngol ; 24(4): 401-412, 2023 08.
Article in English | MEDLINE | ID: mdl-37516679

ABSTRACT

Patients with bilateral vestibulopathy suffer from a variety of complaints, leading to a high individual and social burden. Available treatments aim to alleviate the impact of this loss and improve compensatory strategies. Early experiments with electrical stimulation of the vestibular nerve in combination with knowledge gained by cochlear implant research, have inspired the development of a vestibular neuroprosthesis that can provide the missing vestibular input. The feasibility of this concept was first demonstrated in animals and later in humans. Currently, several research groups around the world are investigating prototype vestibular implants, in the form of vestibular implants as well as combined cochlear and vestibular implants. The aim of this review is to convey the presentations and discussions from the identically named symposium that was held during the 2021 MidWinter Meeting of the Association for Research in Otolaryngology, with researchers involved in the development of vestibular implants targeting the ampullary nerves. Substantial advancements in the development have been made. Yet, research and development processes face several challenges to improve this neuroprosthesis. These include, but are not limited to, optimization of the electrical stimulation profile, refining the surgical implantation procedure, preserving residual labyrinthine functions including hearing, as well as gaining regulatory approval and establishing a clinical care infrastructure similar to what exists for cochlear implants. It is believed by the authors that overcoming these challenges will accelerate the development and increase the impact of a clinically applicable vestibular implant.


Subject(s)
Bilateral Vestibulopathy , Cochlear Implantation , Cochlear Implants , Vestibule, Labyrinth , Animals , Humans , Cochlear Implantation/methods , Vestibule, Labyrinth/surgery , Vestibule, Labyrinth/physiology , Cochlea
5.
Int J Mol Sci ; 24(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240196

ABSTRACT

Globally, over the next few decades, more than 2.5 billion people will suffer from hearing impairment, including profound hearing loss, and millions could potentially benefit from a cochlea implant. To date, several studies have focused on tissue trauma caused by cochlea implantation. The direct immune reaction in the inner ear after an implantation has not been well studied. Recently, therapeutic hypothermia has been found to positively influence the inflammatory reaction caused by electrode insertion trauma. The present study aimed to evaluate the hypothermic effect on the structure, numbers, function and reactivity of macrophages and microglial cells. Therefore, the distribution and activated forms of macrophages in the cochlea were evaluated in an electrode insertion trauma cochlea culture model in normothermic and mild hypothermic conditions. In 10-day-old mouse cochleae, artificial electrode insertion trauma was inflicted, and then they were cultured for 24 h at 37 °C and 32 °C. The influence of mild hypothermia on macrophages was evaluated using immunostaining of cryosections using antibodies against IBA1, F4/80, CD45 and CD163. A clear influence of mild hypothermia on the distribution of activated and non-activated forms of macrophages and monocytes in the inner ear was observed. Furthermore, these cells were located in the mesenchymal tissue in and around the cochlea, and the activated forms were found in and around the spiral ganglion tissue at 37 °C. Our findings suggest that mild hypothermic treatment has a beneficial effect on immune system activation after electrode insertion trauma.


Subject(s)
Hypothermia, Induced , Hypothermia , Mice , Animals , Cochlea , Electrodes, Implanted , Macrophages
6.
Front Pharmacol ; 14: 1062379, 2023.
Article in English | MEDLINE | ID: mdl-36969846

ABSTRACT

Hearing impairment is the most common sensory disorder in humans, and yet hardly any medications are licensed for the treatment of inner ear pathologies. Intricate pharmacokinetic examinations to better understand drug distribution within this complex organ could facilitate the development of novel therapeutics. For such translational research projects, animal models are indispensable, but differences in inner ear dimensions and other anatomical features complicate the transfer of experimental results to the clinic. The gap between rodents and humans may be bridged using larger animal models such as non-human primates. However, their use is challenging and impeded by administrative, regulatory, and financial hurdles. Other large animal models with more human-like inner ear dimensions are scarce. In this study, we analyzed the inner ears of piglets as a potential representative model for the human inner ear and established a surgical approach for intracochlear drug application and subsequent apical sampling. Further, controlled intracochlear delivery of fluorescein isothiocyanate-dextran (FITC-d) was carried out after the insertion of a novel, clinically applicable CE-marked cochlear catheter through the round window membrane. Two, six, and 24 hours after a single injection with this device, the intracochlear FITC-d distribution was determined in sequential perilymph samples. The fluorometrically assessed concentrations two hours after injection were compared to the FITC-d content in control groups, which either had been injected with a simple needle puncture through the round window membrane or the cochlear catheter in combination with a stapes vent hole. Our findings demonstrate not only significantly increased apical FITC-d concentrations when using the cochlear catheter but also higher total concentrations in all perilymph samples. Additionally, the concentration decreased after six and 24 hours and showed a more homogenous distribution compared to shorter observation times.

7.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768339

ABSTRACT

Neurotrophins promote neurite outgrowth of auditory neurons and may help closing the gap to cochlear implant (CI) electrodes to enhance electrical hearing. The best concentrations and mix of neurotrophins for this nerve regrowth are unknown. Whether electrical stimulation (ES) during outgrowth is beneficial or may direct axons is another open question. Auditory neuron explant cultures of distinct cochlear turns of 6-7 days old mice were cultured for four days. We tested different concentrations and combinations of BDNF and NT-3 and quantified the numbers and lengths of neurites with an advanced automated analysis. A custom-made 24-well electrical stimulator based on two bulk CIs served to test different ES strategies. Quantification of receptors trkB, trkC, p75NTR, and histological analysis helped to analyze effects. We found 25 ng/mL BDNF to perform best, especially in basal neurons, a negative influence of NT-3 in combined BDNF/NT-3 scenarios, and tonotopic changes in trk and p75NTR receptor stainings. ES largely impeded neurite outgrowth and glia ensheathment in an amplitude-dependent way. Apical neurons showed slight benefits in neurite numbers and length with ES at 10 and 500 µA. We recommend BDNF as a potent drug to enhance the man-machine interface, but CIs should be better activated after nerve regrowth.


Subject(s)
Brain-Derived Neurotrophic Factor , Cochlear Implants , Mice , Animals , Brain-Derived Neurotrophic Factor/pharmacology , Receptors, Nerve Growth Factor , Neurites , Cochlear Nerve , Electric Stimulation , Neuronal Outgrowth , Neurotrophin 3
8.
Hear Res ; 426: 108644, 2022 12.
Article in English | MEDLINE | ID: mdl-36343533

ABSTRACT

OBJECTIVES: Various animal models have been established and applied in hearing research. In the exploration of novel cochlear implant developments, mainly rodents have been used. Despite their important contribution to the understanding of auditory function, translation of experimental observations from rodents to humans is limited due to the size differences and genetic variability. Large animal models with better representation of the human cochlea are sparse. For this reason, we evaluated domestic piglets and Aachen minipigs for the suitability as a cochlear implantation animal model with commercially available cochlear implants. METHODS: Four domestic piglets (two male and two female) and six Aachen minipigs were implanted with either MED-EL Flex24 or Flex20 cochlear implants respectively, after a step-by-step surgical approach was trained with pig cadavers. Electrophysiological measurements were performed before, during and after implantation for as long as 56 days after surgery. Auditory brainstem responses, electrocochleography as well as electrically and acoustically evoked compound action potentials were recorded. Selected cochleae were further analyzed histologically or with micro-CT imaging. RESULTS: A surgical approach was established using a retroauricular single incision. Baseline auditory thresholds were 27 ± 3 dB sound pressure level (SPL; auditory brainstem click responses, mean ± standard error of the mean) and ranged between 30 and 80 dB SPL in frequency-specific responses (0.5 - 32 kHz). Follow-up measurements revealed deafness within the first two weeks after surgery, but some animals partially recovered to a hearing threshold of 80 dB SPL in certain frequencies as well as in click responses. Electrically evoked compound action potential thresholds increased within the first week after surgery, which led to lower stimulation responses or increase of necessary charge input. Immune reactions and consecutive scalar fibrosis following implantation were confirmed with histological analysis of implanted cochleae and may result in increased impedances. A three-dimensional minipig micro-CT segmentation revealed cochlear volumetric data similar to human inner ear dimensions. CONCLUSIONS: This study underlines the feasibility of cochlear implantation with clinically used cochlear implants in a large animal model with representative inner ear dimensions comparable to humans. To bridge the gap between small animal models and humans in translational research and to account for the structural and size differences, we recommend the minipig as a valuable animal model for hearing research. First insights into the induced trauma in minipigs after cochlear implant surgery and a partial hearing recovery present important data of the cochlear health changes in large animal cochleae.


Subject(s)
Cochlear Implantation , Cochlear Implants , Animals , Male , Female , Humans , Swine , Cochlear Implantation/methods , Swine, Miniature , Cochlea/diagnostic imaging , Cochlea/surgery , Cochlea/pathology , Evoked Potentials, Auditory, Brain Stem/physiology , Auditory Threshold/physiology , Hearing/physiology
9.
Front Immunol ; 13: 965196, 2022.
Article in English | MEDLINE | ID: mdl-36159857

ABSTRACT

Background: Human inner ear contains macrophages whose functional role in early development is yet unclear. Recent studies describe inner ear macrophages act as effector cells of the innate immune system and are often activated following acoustic trauma or exposure to ototoxic drugs. Few or limited literature describing the role of macrophages during inner ear development and organogenesis. Material and Methods: We performed a study combining immunohistochemistry and immunofluorescence using antibodies against IBA1, CX3CL1, CD168, CD68, CD45 and CollagenIV. Immune staining and quantification was performed on human embryonic inner ear sections from gestational week 09 to 17. Results: The study showed IBA1 and CD45 positive cells in the mesenchymal tissue at GW 09 to GW17. No IBA1 positive macrophages were detected in the sensory epithelium of the cochlea and vestibulum. Fractalkine (CX3CL1) signalling was initiated GW10 and parallel chemotactic attraction and migration of macrophages into the inner ear. Macrophages also migrated into the spiral ganglion, cochlear nerve, and peripheral nerve fibers and tissue-expressing CX3CL1. The mesenchymal tissue at all gestational weeks expressed CD163 and CD68. Conclusion: Expressions of markers for resident and non-resident macrophages (IBA1, CD45, CD68, and CD163) were identified in the human fetal inner ear. We speculate that these cells play a role for the development of human inner ear tissue including shaping of the gracile structures.


Subject(s)
Chemokine CX3CL1 , Ear, Inner , Chemokine CX3CL1/metabolism , Cochlea , Ear, Inner/metabolism , Humans , Macrophages , Spiral Ganglion
10.
Front Neurosci ; 16: 914876, 2022.
Article in English | MEDLINE | ID: mdl-35873813

ABSTRACT

After hearing loss retrograde degeneration of spiral ganglion neurons (SGNs) has been described. Studies modeling the effects of degeneration mostly omitted peripheral processes (dendrites). Recent experimental observations indicated that degenerating SGNs manifested also a reduced diameter of their dendrites. We simulated populations of 400 SGNs inside a high resolution cochlear model with a cochlear implant, based on µCT scans of a human temporal bone. Cochlear implant stimuli were delivered as biphasic pulses in a monopolar configuration. Three SGN situations were simulated, based on our previous measurements of human SGN dendrites: (A) SGNs with intact dendrites (before degeneration), (B) degenerating SGNs, dendrites with a smaller diameter but original length, (C) degenerating SGNs, dendrites omitted. SGN fibers were mapped to characteristic frequency, and place pitch was estimated from excitation profiles. Results from degenerating SGNs (B, C) were similar. Most action potentials were initiated in the somatic area for all cases (A, B, C), except for areas near stimulating electrodes in the apex with intact SGNs (A), where action potentials were initiated in the distal dendrite. In most cases, degenerating SGNs had lower thresholds than intact SGNs (A) (down to -2 dB). Excitation profiles showed increased ectopic activation, i.e., activation of unintended neuronal regions, as well as similar neuronal regions excited by different apical electrodes, for degenerating SGNs (B, C). The estimated pitch showed cases of pitch reversals in apical electrodes for intact SGNs (A), as well as mostly identical pitches evoked by the four most apical electrodes for degenerating SGNs (B, C). In conclusion, neuronal excitation profiles to electrical stimulation exhibited similar traits in both ways of modeling SGN degeneration. Models showed degeneration of dendrites caused increased ectopic activation, as well as similar excitation profiles and pitch evoked by different apical electrodes. Therefore, insertion of electrodes beyond approximately 450° may not provide any benefit if SGN dendrites are degenerated.

11.
Cells ; 11(9)2022 05 04.
Article in English | MEDLINE | ID: mdl-35563843

ABSTRACT

Intracellular signal transduction in response to growth factor receptor activation is a fundamental process during the regeneration of the nervous system. In this context, intracellular inhibitors of neuronal growth factor signaling have become of great interest in the recent years. Among them are the prominent signal transduction regulators Sprouty (SPRY) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN), which interfere with major signaling pathways such as extracellular signal-regulated kinase (ERK) or phosphoinositide 3-kinase (PI3K)/Akt in neurons and glial cells. Furthermore, SPRY and PTEN are themselves tightly regulated by ubiquitin ligases such as c-casitas b-lineage lymphoma (c-CBL) or neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4) and by different microRNAs (miRs) including miR-21 and miR-222. SPRY, PTEN and their intracellular regulators play an important role in the developing and the lesioned adult central and peripheral nervous system. This review will focus on the effects of SPRY and PTEN as well as their regulators in various experimental models of axonal regeneration in vitro and in vivo. Targeting these signal transduction regulators in the nervous system holds great promise for the treatment of neurological injuries in the future.


Subject(s)
MicroRNAs , Phosphatidylinositol 3-Kinases , MicroRNAs/genetics , MicroRNAs/pharmacology , Nedd4 Ubiquitin Protein Ligases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/metabolism
12.
Hear Res ; 414: 108391, 2022 02.
Article in English | MEDLINE | ID: mdl-34844170

ABSTRACT

Auditory neurons connect the sensory hair cells from the inner ear to the brainstem. These bipolar neurons are relevant targets for pharmacological intervention aiming at protecting or improving the hearing function in various forms of sensorineural hearing loss. In the research laboratory, neurotrophic compounds are commonly used to improve survival and to promote regeneration of auditory neurons. One important roadblock delaying eventual clinical applications of these strategies in humans is the lack of powerful in vitro models allowing high throughput screening of otoprotective and regenerative compounds. The recently discovered auditory neuroprogenitors (ANPGs) derived from the A/J mouse with an unprecedented capacity to self-renew and to provide mature auditory neurons offer the possibility to overcome this bottleneck. In the present study, we further characterized the new phoenix ANPGs model and compared it to the current gold-standard spiral ganglion organotypic explant (SGE) model to assay neurite outgrowth, neurite length and glutamate-induced Ca2+ response in response to neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF) treatment. Whereas both, SGEs and phoenix ANPGs exhibited a robust and sensitive response to neurotrophins, the phoenix ANPGs offer a considerable range of advantages including high throughput suitability, lower experimental variability, single cell resolution and an important reduction of animal numbers. The phoenix ANPGs in vitro model therefore provides a robust high-throughput platform to screen for otoprotective and regenerative neurotrophic compounds in line with 3R principles and is of interest for the field of auditory neuroscience.


Subject(s)
High-Throughput Screening Assays , Spiral Ganglion , Animals , Brain-Derived Neurotrophic Factor/pharmacology , Hair Cells, Auditory , Mice , Neurites/metabolism , Neurons/physiology
13.
Front Neurol ; 12: 781702, 2021.
Article in English | MEDLINE | ID: mdl-34880828

ABSTRACT

Background: The human cochlea was earlier believed to lack capacity to mount specific immune responses. Recent studies established that the human cochlea holds macrophages. The cells appear to surveil, dispose of, and restore wasted cells to maintain tissue integrity. Macrophage activities are believed to be the central elements in immune responses and could swiftly defuse invading microbes that enter via adjacent infection-prone areas. This review updates recent human studies in light of the current literature and adds information about chemokine gene expression. Materials and Methods: We analyzed surgically obtained human tissue using immunohistochemistry, confocal microscopy, and multichannel super-resolution structured illumination microscopy. The samples were considered representative of steady-state conditions. Antibodies against the ionized calcium-binding adaptor molecule 1 were used to identify the macrophages. CD68 and CD11b, and the major histocompatibility complex type II (MHCII) and CD4 and CD8 were analyzed. The RNAscope technique was used for fractalkine gene localization. Results: Many macrophages were found around blood vessels in the stria vascularis but not CD4 and CD8 lymphocytes. Amoeboid macrophages were identified in the spiral ganglion with surveilling "antennae" projecting against targeted cells. Synapse-like contacts were seen on spiral ganglion cell bodies richly expressing single CXC3CL gene transcripts. Branching neurite-like processes extended along central and peripheral axons. Active macrophages were occasionally found near degenerating hair cells. Some macrophage-interacting T lymphocytes were observed between the scala tympani wall and Rosenthal's canal. CD4 and CD8 cells were not found in the organ of Corti. Conclusions: The results indicate that the human cochlea is equipped with macrophages and potentially lymphocytes, suggesting both an innate and adaptive immune capacity. A rich expression of fractalkine gene transcripts in spiral ganglion neurons suggest an essential role for auditory nerve protection, as has been demonstrated experimentally. The findings provide further information on the important role of the immune machinery present in the human inner ear and its potential to carry adverse immune reactions, including cytotoxic and foreign body responses. The results can be used to form a rationale for therapies aiming to modulate these immune activities.

14.
Curr Protoc ; 1(9): e239, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34495576

ABSTRACT

Advanced immunohistochemical (IHC) protocols aim to visualize different molecules in situ simultaneously. These techniques are of utmost importance as a first step in studying possible interactions of proteins at the subcellular level. Colocalized stains in tissue sections indicate proximity of two proteins of interest. Frequently, double staining protocols are restricted by the lack of primary antibodies generated in different animal species for indirect IHC visualization. Here, we present a detailed protocol for mouse inner ear tissue using two different primary rabbit antibodies directed against transmembrane ion channel proteins of cochlear neurons. The two antibodies are combined for fluorescence (confocal) as well as dual multiplex colorimetric visualization in two sequential single IHC stainings. A heat-denaturation step is performed in between. Primary antibody specificity is tested by preadsorption with the immunogenic peptide, and positive and negative tissue controls are performed to confirm the reliability of the antibody detection. We describe the whole procedure in detail beginning with tissue extraction of the mouse inner ear and continuing with chemical fixation, cryoembedding, and preparation for manual and fully automated immunostaining, including steps for heat-induced antigen retrieval. The potential to use antibodies from the same host species for single and double IHC staining opens up multiple possibilities for detecting different targets in the same tissue section using resources and materials that are widely available. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Tissue preparation, cryoembedding, and sectioning Basic Protocol 2: Double colorimetric immunostaining with an automatic immunostainer Basic Protocol 3: Double manual fluorometric immunostaining with fluorescence.


Subject(s)
Cochlea , Hot Temperature , Animals , Immunohistochemistry , Mice , Rabbits , Reproducibility of Results , Staining and Labeling
15.
J Neurosci Methods ; 363: 109341, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34474047

ABSTRACT

BACKGROUND: Neuronal outgrowth assays using organotypic explant cultures are commonly utilized to study neuroregenerative and -protective effects of drugs such as neurotrophins. While this approach offers higher organized tissue compared to single cell cultures and less experimental effort than in-vivo studies, quantitative evaluation of the neuronal network is often time consuming. Thus, we developed ExplantAnlayzer, a time-saving high-throughput evaluation method, yielding numerous metrics to objectively describe neuronal outgrowth. NEW METHOD: Spiral ganglion explants were cultured in 24-well plates, mechanically fixed in a collagen matrix and immunolabeled against beta-III-tubulin. The explants were imaged using a fluorescent tile-scan microscope and resulting images were stitched. The evaluation was developed as an open-source MATLAB routine and involves several image processing steps, including adaptive thresholding. The neurite network was eventually converted to a graph to track neurites from their terminals back to the explant body. COMPARISON WITH EXISTING METHOD(S): We compared ExplantAnlayzer quantitatively and qualitatively to common existing methods, such as Sholl analyses and manual fiber tracing, using representative explant images. ExplantAnlayzer is able to achieve similar and as detailed results as manual tracing while decreasing manual interaction and required time dramatically. RESULTS: After an initial setup phase, the explant images could be batch-processed altogether. Bright bundles as well as faint fibers were reliably detected. Several metrics describing the outgrowth morphology, including total outgrowth, neurite numbers and length estimations, as well as their growth directions, were computed. CONCLUSIONS: ExplantAnalyzer is a time-saving and objective method for an in-depth evaluation of organotypic explant outgrowth.


Subject(s)
Neuronal Outgrowth , Neurons , Cells, Cultured , Nerve Growth Factors , Neurites
16.
Front Cell Neurosci ; 15: 642211, 2021.
Article in English | MEDLINE | ID: mdl-33796009

ABSTRACT

Background: The human auditory nerve contains 30,000 nerve fibers (NFs) that relay complex speech information to the brain with spectacular acuity. How speech is coded and influenced by various conditions is not known. It is also uncertain whether human nerve signaling involves exclusive proteins and gene manifestations compared with that of other species. Such information is difficult to determine due to the vulnerable, "esoteric," and encapsulated human ear surrounded by the hardest bone in the body. We collected human inner ear material for nanoscale visualization combining transmission electron microscopy (TEM), super-resolution structured illumination microscopy (SR-SIM), and RNA-scope analysis for the first time. Our aim was to gain information about the molecular instruments in human auditory nerve processing and deviations, and ways to perform electric modeling of prosthetic devices. Material and Methods: Human tissue was collected during trans-cochlear procedures to remove petro-clival meningioma after ethical permission. Cochlear neurons were processed for electron microscopy, confocal microscopy (CM), SR-SIM, and high-sensitive in situ hybridization for labeling single mRNA transcripts to detect ion channel and transporter proteins associated with nerve signal initiation and conductance. Results: Transport proteins and RNA transcripts were localized at the subcellular level. Hemi-nodal proteins were identified beneath the inner hair cells (IHCs). Voltage-gated ion channels (VGICs) were expressed in the spiral ganglion (SG) and axonal initial segments (AISs). Nodes of Ranvier (NR) expressed Nav1.6 proteins, and encoding genes critical for inter-cellular coupling were disclosed. Discussion: Our results suggest that initial spike generators are located beneath the IHCs in humans. The first NRs appear at different places. Additional spike generators and transcellular communication may boost, sharpen, and synchronize afferent signals by cell clusters at different frequency bands. These instruments may be essential for the filtering of complex sounds and may be challenged by various pathological conditions.

17.
Cells ; 10(3)2021 03 03.
Article in English | MEDLINE | ID: mdl-33802627

ABSTRACT

Epithelial to mesenchymal transition (EMT) is clinically relevant in head and neck squamous cell carcinoma (HNSCC). We hypothesized that EMT-transcription factors (EMT-TFs) and an anti-EMT factor, Krüppel-like-factor-4 (KLF4) regulate EMT in HNSCC. Ten control mucosa and 37 HNSCC tissue samples and three HNSCC cell lines were included for investigation of EMT-TFs, KLF4 and vimentin at mRNA and protein levels. Slug gene expression was significantly higher, whereas, KLF4 gene expression was significantly lower in HNSCC than in normal mucosa. In the majority of HNSCC samples, there was a significant negative correlation between KLF4 and Slug gene expression. Slug gene expression was significantly higher in human papilloma virus (HPV) negative HNSCC, and in tumor samples with irregular p53 gene sequence. Transforming-growth-factor-beta-1 (TGF- ß1) contributed to downregulation of KLF4 and upregulation of Slug. Two possible regulatory pathways could be suggested: (1) EMT-factors induced pathway, where TGF-ß1 induced Slug together with vimentin, and KLF4 was down regulated at the same time; (2) p53 mutations contributed to upregulation and stabilization of Slug, where also KLF4 could co-exist with EMT-TFs.


Subject(s)
Head and Neck Neoplasms/genetics , Kruppel-Like Transcription Factors/genetics , Nuclear Proteins/genetics , Snail Family Transcription Factors/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Tumor Suppressor Protein p53/genetics , Twist-Related Protein 1/genetics , Aged , Aged, 80 and over , Case-Control Studies , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/pathology , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Male , Middle Aged , Neoplasm Staging , Nuclear Proteins/metabolism , Signal Transduction , Snail Family Transcription Factors/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/pathology , Survival Analysis , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Tumor Suppressor Protein p53/metabolism , Twist-Related Protein 1/metabolism , Vimentin/genetics , Vimentin/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
18.
Histochem Cell Biol ; 155(3): 405-421, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33251550

ABSTRACT

Epithelial, connective tissue and immune cells contribute in various ways to the pathophysiology of chronic rhinosinusitis (CRS). However, data of their distribution in upper airway mucosa are sparse. We aimed to provide quantitative, purely informative data on the distribution of these cell lineages and their coexpression patterns, which might help identifying, e.g., cells in the epithelium undergoing through epithelial-mesenchymal transition (EMT). For this purpose, we used immunofluorescence multichannel image cytometry (IMIC). We examined fixed paraffin-embedded tissue samples (FFPE) of six patients with chronic rhinosinusitis (CRS) and of three patients without CRS (controls). The direct-conjugated antibodies pancytokeratin, vimentin and CD45/CD18 were used for coexpression analysis in epithelial layer and lamina propria. Image acquisition and analysis were performed with TissueFAXS and StrataQuest, respectively. To distinguish positive from negative expression, a ratio between cell-specific immunostaining intensity and background was developed. Isotype controls were used as negative controls. Per patient, a 4.5-mm2 tissue area was scanned and a median of 14,875 cells was recognized. The most common cell types were cytokeratin-single-positive (26%), vimentin-single-positive (13%) and CD45/CD18-single-positive with CD45/CD18-vimentin-double-positive cells (29%). In the patients with CRS, CD45/CD18-single-positive cells were 3-6 times higher compared to the control patients. In the epithelial layer, cytokeratin-vimentin-double-positive EMT cells were observed 3-5 times higher in the patients with CRS than in the control patients. This study provided quantitative data for the distribution of crucial cell types in CRS. Future studies may focus on the distribution and coexpression patterns of different immune cells in CRS or even cancer tissue.


Subject(s)
Connective Tissue Cells/pathology , Epithelial Cells/pathology , Fluorescent Antibody Technique , Image Cytometry , Nasal Mucosa/pathology , Sinusitis/pathology , Adolescent , Adult , Chronic Disease , Connective Tissue Cells/immunology , Epithelial Cells/immunology , Epithelial-Mesenchymal Transition/immunology , Female , Humans , Immunity, Cellular/immunology , Male , Middle Aged , Nasal Mucosa/immunology , Pilot Projects , Sinusitis/immunology , Young Adult
19.
J Neurosci Res ; 99(2): 699-728, 2021 02.
Article in English | MEDLINE | ID: mdl-33181864

ABSTRACT

Neuronal diversity in the cochlea is largely determined by ion channels. Among voltage-gated channels, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels open with hyperpolarization and depolarize the cell until the resting membrane potential. The functions for hearing are not well elucidated and knowledge about localization is controversial. We created a detailed map of subcellular location and co-expression of all four HCN subunits across different mammalian species including CBA/J, C57Bl/6N, Ly5.1 mice, guinea pigs, cats, and human subjects. We correlated age-related hearing deterioration in CBA/J and C57Bl/6N with expression levels of HCN1, -2, and -4 in individual auditory neurons from the same cohort. Spatiotemporal expression during murine postnatal development exposed HCN2 and HCN4 involvement in a critical phase of hair cell innervation. The huge diversity of subunit composition, but lack of relevant heteromeric pairing along the perisomatic membrane and axon initial segments, highlighted an active role for auditory neurons. Neuron clusters were found to be the hot spots of HCN1, -2, and -4 immunostaining. HCN channels were also located in afferent and efferent fibers of the sensory epithelium. Age-related changes on HCN subtype expression were not uniform among mice and could not be directly correlated with audiometric data. The oldest mice groups revealed HCN channel up- or downregulation, depending on the mouse strain. The unexpected involvement of HCN channels in outer hair cell function where HCN3 overlaps prestin location emphasized the importance for auditory function. A better understanding may open up new possibilities to tune neuronal responses evoked through electrical stimulation by cochlear implants.


Subject(s)
Aging/metabolism , Cochlea/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/physiology , Neurons/metabolism , Potassium Channels/physiology , Animals , Cats , Cochlea/growth & development , Evoked Potentials, Auditory, Brain Stem , Female , Gene Expression Regulation , Guinea Pigs , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/metabolism , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/biosynthesis , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Neurons/ultrastructure , Potassium Channels/biosynthesis , Potassium Channels/genetics , Subcellular Fractions/metabolism
20.
Brain Sci ; 10(9)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32839381

ABSTRACT

BACKGROUND: The spatial gap between cochlear implants (CIs) and the auditory nerve limits frequency selectivity as large populations of spiral ganglion neurons (SGNs) are electrically stimulated synchronously. To improve CI performance, a possible strategy is to promote neurite outgrowth toward the CI, thereby allowing a discrete stimulation of small SGN subpopulations. Brain-derived neurotrophic factor (BDNF) is effective to stimulate neurite outgrowth from SGNs. METHOD: TrkB (tropomyosin receptor kinase B) agonists, BDNF, and five known small-molecule BDNF mimetics were tested for their efficacy in stimulating neurite outgrowth in postnatal SGN explants. To modulate Trk receptor-mediated effects, TrkB and TrkC ligands were scavenged by an excess of recombinant receptor proteins. The pan-Trk inhibitor K252a was used to block Trk receptor actions. RESULTS: THF (7,8,3'-trihydroxyflavone) partly reproduced the BDNF effect in postnatal day 7 (P7) mouse cochlear spiral ganglion explants (SGEs), but failed to show effectiveness in P4 SGEs. During the same postnatal period, spontaneous and BDNF-stimulated neurite outgrowth increased. The increased neurite outgrowth in P7 SGEs was not caused by the TrkB/TrkC ligands, BDNF and neurotrophin-3 (NT-3). CONCLUSIONS: The age-dependency of induction of neurite outgrowth in SGEs was very likely dependent on presently unidentified factors and/or molecular mechanisms which may also be decisive for the age-dependent efficacy of the small-molecule TrkB receptor agonist THF.

SELECTION OF CITATIONS
SEARCH DETAIL
...