Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Strahlenther Onkol ; 200(1): 71-82, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37380796

ABSTRACT

PURPOSE: The robustness of surface-guided (SG) deep-inspiration breath-hold (DIBH) radiotherapy (RT) for left breast cancer was evaluated by investigating any potential dosimetric effects due to the residual intrafractional motion allowed by the selected beam gating thresholds. The potential reduction of DIBH benefits in terms of organs at risk (OARs) sparing and target coverage was evaluated for conformational (3DCRT) and intensity-modulated radiation therapy (IMRT) techniques. METHODS: A total of 192 fractions of SGRT DIBH left breast 3DCRT treatment for 12 patients were analyzed. For each fraction, the average of the real-time displacement between the isocenter on the daily reference surface and on the live surface ("SGRT shift") during beam-on was evaluated and applied to the original plan isocenter. The dose distribution for the treatment beams with the new isocenter point was then calculated and the total plan dose distribution was obtained by summing the estimated perturbed dose for each fraction. Then, for each patient, the original plan and the perturbed one were compared by means of Wilcoxon test for target coverage and OAR dose-volume histogram (DVH) metrics. A global plan quality score was calculated to assess the overall plan robustness against intrafractional motion of both 3DCRT and IMRT techniques. RESULTS: Target coverage and OAR DVH metrics did not show significant variations between the original and the perturbed plan for the IMRT techniques. 3DCRT plans showed significant variations for the left descending coronary artery (LAD) and the humerus only. However, none of the dose metrics exceeded the mandatory dose constraints for any of the analyzed plans. The global plan quality analysis indicated that both 3DCRT and IMRT techniques were affected by the isocenter shifts in the same way and, generally, the residual isocenter shifts more likely tend to worsen the plan in all cases. CONCLUSION: The DIBH technique proved to be robust against residual intrafractional isocenter shifts allowed by the selected SGRT beam-hold thresholds. Small-volume OARs located near high dose gradients showed significant marginal deteriorations in the perturbed plans with the 3DCRT technique only. Global plan quality was mainly influenced by patient anatomy and treatment beam geometry rather than the technique adopted.


Subject(s)
Breast Neoplasms , Radiotherapy, Conformal , Radiotherapy, Intensity-Modulated , Unilateral Breast Neoplasms , Humans , Female , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Breath Holding , Radiotherapy, Conformal/methods , Breast Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Organs at Risk , Unilateral Breast Neoplasms/radiotherapy
2.
Strahlenther Onkol ; 199(1): 55-66, 2023 01.
Article in English | MEDLINE | ID: mdl-36229656

ABSTRACT

PURPOSE: To compare two left breast cancer patient cohorts (tangential vs. locoregional deep-inspiration breath-hold - DIBH treatment) with different predefined beam gating thresholds and to evaluate their impact on motion management and DIBH stability. METHODS: An SGRT-based clinical workflow was adopted for the DIBH treatment. Intrafractional monitoring was performed by tracking both the respiratory signal and the real-time displacement between the isocenter on the daily reference surface and on the live surface ("SGRT shift"). Beam gating tolerances were 5 mm/4 mm for the SGRT shifts and 5 mm/3 mm for the gating window amplitude for breast tangential and breast + lymph nodes locoregional treatments, respectively. A total of 24 patients, 12 treated with a tangential technique and 12 with a locoregional technique, were evaluated for a total number of 684 fractions. Statistical distributions of SGRT shift and respiratory signal for each treatment fraction, for each patient treatment, and for the two population samples were generated. RESULTS: Lateral cumulative distributions of SGRT shifts for both locoregional and tangential samples were consistent with a null shift, whereas longitudinal and vertical ones were slightly negative (mean values < 1 mm). The distribution of the percentage of beam on time with SGRT shift > 3 mm, > 4 mm, or > 5 mm was extended toward higher values for the tangential sample than for the locoregional sample. The variability in the DIBH respiration signal was significantly greater for the tangential sample. CONCLUSION: Different beam gating thresholds for surface-guided DIBH treatment of left breast cancer can impact motion management and DIBH stability by reducing the frequency of the maximum SGRT shift and increasing respiration signal stability when tighter thresholds are adopted.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/radiotherapy , Breath Holding , Respiration , Motion , Breast , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage
3.
Protoplasma ; 259(1): 103-115, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33860374

ABSTRACT

Spartium junceum L. is a typical species of Mediterranean shrubland areas, also grown in gardens and parks as an ornamental. In recent years in Europe, S. junceum has been recurrently found to be infected by different subspecies and genotypes of the quarantine regulated bacterium Xylella fastidiosa (Xf). This work presents for the first time the anatomy of S. junceum plants that we found, by means of genetic and immunochemistry analysis, to be naturally infected by Xf subsp. multiplex ST87 (XfmST87) in Monte Argentario (Grosseto, Tuscany, Italy), a new outbreak area within the EU. Our anatomical observations showed that bacteria colonized exclusively the xylem conductive elements and moved horizontally to adjacent vessels through pits. Interestingly, a pink/violet matrix was observed with Toluidine blue staining in infected conduits indicating a high content of acidic polysaccharides. In particular, when this pink-staining matrix was observed, bacterial cells were either absent or degenerated, suggesting that the matrix was produced by the host plant as a defense response against bacterial spread. In addition, a blue-staining phenolic material was found in the vessels and, at high concentration, in the pits and inter-vessels. SEM micrographs confirmed that polysaccharide and phenolic components showed different structures, which appear to be related to two different morphologies: fibrillary and granular, respectively. Moreover, our LM observations revealed bacterial infection in xylem conductive elements of green shoots and leaves only, and not in those of other plant organs such as roots and flowers.


Subject(s)
Spartium , Genotype , Plant Diseases , Xylella , Xylem
4.
Photochem Photobiol Sci ; 19(1): 34-39, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31799583

ABSTRACT

In the field of photodynamic therapy (PDT), optimization of the in vivo therapeutic efficacy needs a comprehensive study of the photo-killing action spectrum that depends on both the photosensitizer (PS) absorption and the tissue optical properties. This is especially true in the case of gastric infections by Helicobacter pylori: PS absorption has been largely investigated in vitro, while the contribution of tissue optical properties and illumination geometry has been poorly studied, despite being parameters that reflect the specific in vivo conditions. To investigate their influence, we focussed on the case of a point-like light source positioned in the antrum. This models a therapeutic device developed by our team which consists of a LED-based ingestible pill. By a simple 3D illumination model, our approach mediates light-tissue interaction over the illuminated stomach wall surface, then calculates its average transmittance T by means of a 1D model representative of the mean gastric mucosa structure. Finally, by merging T(λ) with the photosensitizers' absorption we obtained the in vivo action spectrum. This shows two peaks at about 500 and 630 nm, indicating a noticeable influence of the tissue with respect to in vitro studies, where the action spectrum reflects PS absorption only. Our approach defines one average action spectrum for this specific therapeutic context, which reflects the need to choose one emission spectrum for the light source used. The proposed methodology could be applied to any other illumination geometry of cave organs, provided appropriate model modifications for the light source and tissue characteristics are made.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gastric Mucosa/drug effects , Helicobacter Infections/drug therapy , Helicobacter pylori/drug effects , Photochemotherapy , Photosensitizing Agents/pharmacology , Gastric Mucosa/microbiology , Helicobacter Infections/microbiology , Humans , Microbial Sensitivity Tests
5.
Nature ; 467(7317): 811-3, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20944741

ABSTRACT

It has recently been suggested that galaxies in the early Universe could have grown through the accretion of cold gas, and that this may have been the main driver of star formation and stellar mass growth. Because the cold gas is essentially primordial, it has a very low abundance of elements heavier than helium (referred to as metallicity). If funnelled to the centre of a galaxy, it will result in the central gas having an overall lower metallicity than gas further from the centre, because the gas further out has been enriched by supernovae and stellar winds, and not diluted by the primordial gas. Here we report chemical abundances across three rotationally supported star-forming galaxies at redshift z ≈ 3, only 2 Gyr after the Big Bang. We find 'inverse' gradients, with the central, star-forming regions having lower metallicities than less active ones, which is opposite to what is seen in local galaxies. We conclude that the central gas has been diluted by the accretion of primordial gas, as predicted by 'cold flow' models.

SELECTION OF CITATIONS
SEARCH DETAIL
...