Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 27(24): 29927-29942, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32506411

ABSTRACT

Water pollution by heavy metals has many human origins, such as the burning of fossil fuels, exhaust gases of vehicles, mining, agriculture, and incineration of solid and liquid wastes. Heavy metals also occur naturally, due to volcanoes, thermal springs activity, erosion, infiltration, etc. This water contamination is a threat for living beings because most heavy metals are toxic to humans and to aquatic life. Hence, it is important to find effective techniques for removing these contaminants in order to reduce the level of pollution of the natural waters. In this work, we have reviewed the toxicity of several heavy metals (mercury, lead, cadmium, chromium, nickel), their impact on the environment and human health, and the synthesis and characterization methods of conducting organic polymers (COPs) utilized for the removal of heavy metals from the environment. Therefore, this review was essentially aimed to present recent works and methods (2000-2020) on the environmental impact and toxicity of heavy metals and on the removal of toxic heavy metals, using chemically and/or electrochemically synthesized COPs. We have also stressed the great interest of COPs for the removal of toxic heavy metals from waters.


Subject(s)
Metals, Heavy/analysis , Polymers , Cadmium/analysis , Environmental Pollution , Heavy Metal Poisoning , Humans
2.
Sensors (Basel) ; 20(3)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973054

ABSTRACT

Highly sensitive multicomponent materials designed for the recognition of hazardous compounds request control over interfacial chemistry. The latter is a key parameter in the construction of the sensing (macro) molecular architectures. In this work, multi-walled carbon nanotubes (CNTs) were deposited on diazonium-modified, flexible indium tin oxide (ITO) electrodes prior to the electropolymerization of pyrrole. This three-step process, including diazonium electroreduction, the deposition of CNTs and electropolymerization, provided adhesively-bonded, polypyrrole-wrapped CNT composite coatings on aminophenyl-modified flexible ITO sheets. The aminophenyl (AP) groups were attached to ITO by electroreduction of the in-situ generated aminobenzenediazonium compound in aqueous, acidic medium. For the first time, polypyrrole (PPy) was electrodeposited in the presence of both benzenesulfonic acid (dopant) and ethylene glycol-bis(2-aminoethylether)-tetraacetic acid (EGTA), which acts as a chelator. The flexible electrodes were characterized by XPS, Raman and scanning electron microscopy (SEM), which provided strong supporting evidence for the wrapping of CNTs by the electrodeposited PPy. Indeed, the CNT average diameter increased from 18 ± 2.6 nm to 27 ± 4.8, 35.6 ± 5.9 and 175 ± 20.1 after 1, 5 and 10 of electropolymerization of pyrrole, respectively. The PPy/CNT/NH2-ITO films generated by this strategy exhibit significantly improved stability and higher conductivity compared to a similar PPy coating without any embedded CNTs, as assessed by from electrochemical impedance spectroscopy measurements. The potentiometric response was linear in the 10-8-3 × 10-7 mol L-1 Pb(II) concentration range, and the detection limit was 2.9 × 10-9 mol L-1 at S/N = 3. The EGTA was found to drastically improve selectivity for Pb(II) over Cu(II). To account for this improvement, the density functional theory (DFT) was employed to calculate the EGTA-metal ion interaction energy, which was found to be -374.6 and -116.4 kJ/mol for Pb(II) and Cu(II), respectively, considering solvation effects. This work demonstrates the power of a subtle combination of diazonium coupling agent, CNTs, chelators and conductive polymers to design high-performance electrochemical sensors for environmental applications.

3.
Luminescence ; 34(5): 489-499, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30972923

ABSTRACT

To develop conducting organic polymers (COPs) as luminescent sensors for determination of toxic heavy metals, a new benzene sulfonic acid-doped polypyrrole (PPy-BSA) thin film was electrochemically prepared by cyclic voltammetry (CV) on flexible indium tin oxide (ITO) electrode in aqueous solution. PPy-BSA film was characterized by FTIR spectrometry, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The optical properties of PPy-BSA were investigated by ultraviolet (UV)-visible absorption and fluorescence spectrometry in dimethylsulfoxide (DMSO) diluted solutions. PPy-BSA fluorescence spectra were strongly quenched upon increasing copper(II) ion (Cu2+ ) and lead(II) ion (Pb2+ ) concentrations in aqueous medium, and linear Stern-Volmer relationships were obtained, which indicated the existence of a main dynamic fluorescence quenching mechanism. BSA-PPy sensor showed a high sensitivity for detection of both metallic ions, Cu2+ and Pb2+ , with very low limit of detection values of 3.1 and 18.0 nM, respectively. The proposed quenching-fluorimetric sensor might be applied to the determination of traces of toxic heavy metallic ions in water samples.


Subject(s)
Benzene/chemistry , Copper/analysis , Fluorometry/methods , Lead/analysis , Polymers/chemistry , Pyrroles/chemistry , Sulfonic Acids/chemistry , Water Pollutants, Chemical/analysis , Fluorometry/instrumentation
4.
Environ Sci Pollut Res Int ; 25(20): 20012-20022, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29744780

ABSTRACT

Adhesively bonded polypyrrole thin films doped with benzene sulfonic acid (BSA) were electrodeposited on aminobenzenediazonium-modified flexible ITO electrodes and further employed for the detection of Pb2+, Cu2+, and Cd2+ metal ions in aqueous medium. The aminophenyl (AP) adhesive layer was grafted to ITO by electroreduction of the in situ generated parent diazonium compound. Polypyrrole (PPy) thin films exhibited remarkable adhesion to aminophenyl (ITO-AP). The strongly adherent polypyrrole films exhibited excellent electroactivity in the doped state with BSA which itself served to chelate the metal ions in aqueous medium. The surface of the resulting, modified flexible electrode was characterized by XPS, SEM, and electrochemical methods. The ITO-AP-PPy electrodes were then used for the simultaneous detection of Cu2+, Cd2+, and Pb2+ by differential pulse voltammetry (DPV). The detection limits were 11.1, 8.95, and 0.99 nM for Cu2+, Cd2+, and Pb2+, respectively. In addition, the modified electrodes displayed a good reproducibility, making them suitable for the determination of heavy metals in real wastewater samples.


Subject(s)
Adhesives/chemistry , Diazonium Compounds/chemistry , Metals, Heavy/analysis , Polymers/chemistry , Pyrroles/chemistry , Water Pollutants, Chemical/analysis , Benzenesulfonates/chemistry , Electrochemical Techniques , Electrodes , Limit of Detection , Metals, Heavy/chemistry , Reproducibility of Results , Water Pollutants, Chemical/chemistry
5.
Environ Sci Pollut Res Int ; 25(9): 8581-8591, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29318483

ABSTRACT

Water pollution by heavy metals is a great health concern worldwide. Lead and cadmium are among the most toxic heavy metals because they are dangerous for the human and aquatic lives. In this work, the removal of lead and cadmium from aqueous solutions has been studied using electrosynthesized 4-amino-3-hydroxynaphthalene-1-sulfonic acid-doped polypyrrole (AHNSA-PPy) films as a new adsorbent. Two distinct methods, including the immersion method, based on the Pb2+ and Cd2+ spontaneous removal by impregnation of the polymer in the solution, and the electro-elimination method, consisting of removal of Pb2+ and Cd2+ ions from the solution by applying a small electrical current (5 mA) to the polymer film, were developed: the evolution of Pb2+ and Cd2+ concentrations with time was monitored by inductively coupled plasma optical emission spectrometry (ICP-OES). The effect of pH on the adsorption and electro-elimination of Pb2+ and Cd2+ using the AHNSA-PPy film was investigated and optimized, showing that the ionic adsorption and electro-elimination processes were highly pH-dependent. The kinetics of Pb2+ and Cd2+ adsorption and electro-elimination were found to follow second-order curves. The maximum adsorption capacity values of the AHNSA-PPy film were 64.0 and 50.4 mg/g, respectively, for Pb2+ and Cd2+. The removal efficiency values were, respectively, for Pb2+ and Cd2+, 80 and 63% by the immersion method, and 93 and 85% by the electro-elimination method. Application of both methods to Senegal natural waters, fortified with Pb2+ and Cd2+, led to removal efficiency values of, respectively for Pb2+ and Cd2+, 76-77 and 58-59% by the immersion method, and of 82-90 and 80-83%, by the electro-elimination method.


Subject(s)
Cadmium/analysis , Electrochemical Techniques/methods , Lead/analysis , Naphthalenes/chemistry , Polymers/chemistry , Pyrroles/chemistry , Sulfonic Acids/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Models, Theoretical , Senegal , Solutions
6.
Environ Sci Pollut Res Int ; 24(26): 21111-21127, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28730362

ABSTRACT

Polypyrrole (PPy) conducting films, doped with 4-amino-3-hydroxynaphthalene sulfonic acid (AHNSA), were electrosynthesized by anodic oxidation of pyrrole on Pt and steel electrodes in aqueous medium (0.01 M AHNSA +0.007 M NaOH, using cyclic voltammetry (CV), and their electrochemical properties were studied. Fourier-transform infrared (FT-IR) spectroscopy confirmed the formation of AHNSA-PPy films. Their morphology was characterized by scanning electron microscopy (SEM), and their optical properties, including UV-VIS absorption and fluorescence spectra, were also investigated. AHNSA-PPy films were used for the removal of chromium(VI) from aqueous solution, by means of the immersion method and the Cr(VI) electro-reduction method. The effect of various experimental parameters, including the adsorbent (polymer) mass, pH, type of electrodes, and current intensity, on the adsorption of chromium by the polymer was performed and optimized. The adsorption and electro-reduction of (Cr VI) on the AHNSA-PPy film surface were found to be highly pH-dependent, and the kinetics of Cr(VI) adsorption and electro-reduction followed second-order kinetic curves. Apparent second-order rate constants were about three times higher for the Cr(VI) electro-reduction method than for the immersion method, indicating that the use of electro-reduction method significantly accelerated the chromium adsorption process on polymer. The maximum adsorption capacity of the AHNSA-PPy film for chromium was 224 mg g-1. A 96% chromium removal from pure aqueous solution was reached within about 48 h by the immersion method, but only within about 6 h by the Cr(VI) electro-reduction method. Application of both methods to Cr(VI) fortified natural waters of Senegal led to chromium removal efficiency high values (93 to 96% according to the type of natural water).


Subject(s)
Chromium/isolation & purification , Naphthalenes/chemistry , Polymers/chemistry , Pyrroles/chemistry , Sulfonic Acids/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction , Senegal , Spectroscopy, Fourier Transform Infrared , Water/chemistry , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...