Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
J Synchrotron Radiat ; 27(Pt 3): 860-863, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32381791

ABSTRACT

In this paper, the design and functionalities of the high-throughput TELL sample exchange system for macromolecular crystallography is presented. TELL was developed at the Paul Scherrer Institute with a focus on speed, storage capacity and reliability to serve the three macromolecular crystallography beamlines of the Swiss Light Source, as well as the SwissMX instrument at SwissFEL.


Subject(s)
Crystallography, X-Ray/instrumentation , Macromolecular Substances/chemistry , Equipment Design , Reproducibility of Results , Robotics/instrumentation , Synchrotrons/instrumentation
2.
J Synchrotron Radiat ; 26(Pt 2): 393-405, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30855248

ABSTRACT

MXCuBE2 is the second-generation evolution of the MXCuBE beamline control software, initially developed and used at ESRF - the European Synchrotron. MXCuBE2 extends, in an intuitive graphical user interface (GUI), the functionalities and data collection methods available to users while keeping all previously available features and allowing for the straightforward incorporation of ongoing and future developments. MXCuBE2 introduces an extended abstraction layer that allows easy interfacing of any kind of macromolecular crystallography (MX) hardware component, whether this is a diffractometer, sample changer, detector or optical element. MXCuBE2 also works in strong synergy with the ISPyB Laboratory Information Management System, accessing the list of samples available for a particular experimental session and associating, either from instructions contained in ISPyB or from user input via the MXCuBE2 GUI, different data collection types to them. The development of MXCuBE2 forms the core of a fruitful collaboration which brings together several European synchrotrons and a software development factory and, as such, defines a new paradigm for the development of beamline control platforms for the European MX user community.

3.
Acta Crystallogr D Struct Biol ; 73(Pt 10): 841-851, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28994413

ABSTRACT

Automated sample changers are now standard equipment for modern macromolecular crystallography synchrotron beamlines. Nevertheless, most are only compatible with a single type of sample holder and puck. Recent work aimed at reducing sample-handling efforts and crystal-alignment times at beamlines has resulted in a new generation of compact and precise sample holders for cryocrystallography: miniSPINE and NewPin [see the companion paper by Papp et al. (2017, Acta Cryst., D73, 829-840)]. With full data collection now possible within seconds at most advanced beamlines, and future fourth-generation synchrotron sources promising to extract data in a few tens of milliseconds, the time taken to mount and centre a sample is rate-limiting. In this context, a versatile and fast sample changer, FlexED8, has been developed that is compatible with the highly successful SPINE sample holder and with the miniSPINE and NewPin sample holders. Based on a six-axis industrial robot, FlexED8 is equipped with a tool changer and includes a novel open sample-storage dewar with a built-in ice-filtering system. With seven versatile puck slots, it can hold up to 112 SPINE sample holders in uni-pucks, or 252 miniSPINE or NewPin sample holders, with 36 samples per puck. Additionally, a double gripper, compatible with the SPINE sample holders and uni-pucks, allows a reduction in the sample-exchange time from 40 s, the typical time with a standard single gripper, to less than 5 s. Computer vision-based sample-transfer monitoring, sophisticated error handling and automatic error-recovery procedures ensure high reliability. The FlexED8 sample changer has been successfully tested under real conditions on a beamline.


Subject(s)
Crystallography/instrumentation , Crystallography/economics , Equipment Design , Proteins/chemistry , Robotics/economics , Robotics/instrumentation , Specimen Handling , Temperature , Time Factors
4.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 1): 67-75, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25615861

ABSTRACT

Small-angle X-ray scattering (SAXS) of macromolecules in solution is in increasing demand by an ever more diverse research community, both academic and industrial. To better serve user needs, and to allow automated and high-throughput operation, a sample changer (BioSAXS Sample Changer) that is able to perform unattended measurements of up to several hundred samples per day has been developed. The Sample Changer is able to handle and expose sample volumes of down to 5 µl with a measurement/cleaning cycle of under 1 min. The samples are stored in standard 96-well plates and the data are collected in a vacuum-mounted capillary with automated positioning of the solution in the X-ray beam. Fast and efficient capillary cleaning avoids cross-contamination and ensures reproducibility of the measurements. Independent temperature control for the well storage and for the measurement capillary allows the samples to be kept cool while still collecting data at physiological temperatures. The Sample Changer has been installed at three major third-generation synchrotrons: on the BM29 beamline at the European Synchrotron Radiation Facility (ESRF), the P12 beamline at the PETRA-III synchrotron (EMBL@PETRA-III) and the I22/B21 beamlines at Diamond Light Source, with the latter being the first commercial unit supplied by Bruker ASC.


Subject(s)
Robotics , Scattering, Small Angle , High-Throughput Screening Assays , Synchrotrons
5.
J Synchrotron Radiat ; 20(Pt 4): 660-4, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23765312

ABSTRACT

Small-angle X-ray scattering (SAXS) measurements of proteins in solution are becoming increasingly popular with biochemists and structural biologists owing to the presence of dedicated high-throughput beamlines at synchrotron sources. As part of the ESRF Upgrade program a dedicated instrument for performing SAXS from biological macromolecules in solution (BioSAXS) has been installed at the renovated BM29 location. The optics hutch has been equipped with new optical components of which the two principal elements are a fixed-exit double multilayer monochromator and a 1.1 m-long toroidal mirror. These new dedicated optics give improved beam characteristics (compared with the previous set-up on ID14-3) regarding the energy tunability, flux and focusing at the detector plane leading to reduced parasitic scattering and an extended s-range. User experiments on the beamline have been successfully carried out since June 2012. A description of the new BioSAXS beamline and the set-up characteristics are presented together with examples of obtained data.


Subject(s)
Proteins/chemistry , Scattering, Small Angle , Solutions
6.
J Synchrotron Radiat ; 19(Pt 3): 455-61, 2012 May.
Article in English | MEDLINE | ID: mdl-22514185

ABSTRACT

ID29 is an ESRF undulator beamline with a routinely accessible energy range of between 20.0 keV and 6.0 keV (λ = 0.62 Što 2.07 Å) dedicated to the use of anomalous dispersion techniques in macromolecular crystallography. Since the beamline was first commissioned in 2001, ID29 has, in order to provide an improved service to both its academic and proprietary users, been the subject of almost continuous upgrade and refurbishment. It is now also the home to the ESRF Cryobench facility, ID29S. Here, the current status of the beamline is described and plans for its future are briefly outlined.


Subject(s)
Macromolecular Substances/chemistry , Synchrotrons/instrumentation , Trypsin/chemistry , X-Ray Diffraction
7.
J Struct Biol ; 175(2): 236-43, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21385612

ABSTRACT

The increase in the number of large multi-component complexes and membrane protein crystal structures determined over the last few years can be ascribed to a number of factors such as better protein expression and purification systems, the emergence of high-throughput crystallization techniques and the advent of 3rd generation synchrotron sources. However, many systems tend to produce crystals that can be extremely heterogeneous in their diffraction properties. This prevents, in many cases, the collection of diffraction data of sufficient quality to yield useful biological or phase information. Techniques that can increase the diffraction quality of macromolecular crystals can therefore be essential in the successful conclusion of these challenging projects. No technique is universal but encouraging results have been recently achieved by carrying out the controlled dehydration of crystals of biological macromolecules. A new device that delivers a stream of air with a precisely controlled relative humidity to the complicated sample environment found at modern synchrotron beamlines has been conceived at the EMBL Grenoble and developed by the EMBL and the ESRF as part of the SPINE2 complexes project, a European Commission funded protein structure initiative. The device, the HC1b, has been available for three years at the ESRF macromolecular crystallography beamlines and many systems have benefitted from on-line controlled dehydration. Here we describe a standard dehydration experiment, highlight some successful cases and discuss the different possible uses of the device.


Subject(s)
Crystallography, X-Ray/instrumentation , Desiccation/instrumentation , Multiprotein Complexes/chemistry , Phase Transition , Amyloid/chemistry , Cold Temperature , Crystallography, X-Ray/methods , Desiccation/methods , Humans , Phosphoglycerate Kinase/chemistry , Photosystem I Protein Complex/chemistry , Synchrotrons/instrumentation
8.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 12): 1237-46, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19966409

ABSTRACT

Dehydration of protein crystals is rarely used, despite being a post-crystallization method that is useful for the improvement of crystal diffraction properties, as it is difficult to reproduce and monitor. A novel device for hydration control of macromolecular crystals in a standard data-collection environment has been developed. The device delivers an air stream of precise relative humidity that can be used to alter the amount of water in macromolecular crystals. The device can be rapidly installed and is fully compatible with most standard synchrotron X-ray beamlines. Samples are mounted in cryoloops and the progress of dehydration can be monitored both optically and by the acquisition of diffraction images. Once the optimal hydration level has been obtained, cryocooling is easy to achieve by hand or by using a sample changer. The device has been thoroughly tested on several ESRF beamlines and is available to users.


Subject(s)
Proteins/analysis , X-Ray Diffraction/instrumentation , X-Ray Diffraction/methods , Animals , Chickens , Crystallization , Escherichia coli/chemistry , Models, Molecular , Protein Structure, Tertiary , Proteins/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL