Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Endocrinol Diabetes Metab ; 6(4): e425, 2023 07.
Article in English | MEDLINE | ID: mdl-37144278

ABSTRACT

INTRODUCTION: Nowadays, there are no strong diabetic pig models, yet they are required for various types of diabetes research. Using cutting-edge techniques, we attempted to develop a type 2 diabetic minipig model in this study by combining a partial pancreatectomy (Px) with an energetic overload administered either orally or parenterally. METHODS: Different groups of minipigs, including Göttingen-like (GL, n = 17) and Ossabaw (O, n = 4), were developed. Prior to and following each intervention, metabolic assessments were conducted. First, the metabolic responses of the Göttingen-like (n = 3) and Ossabaw (n = 4) strains to a 2-month High-Fat, High-Sucrose diet (HFHSD) were compared. Then, other groups of GL minipigs were established: with a single Px (n = 10), a Px combined with a 2-month HFHSD (n = 6), and long-term intraportal glucose and lipid infusions that were either preceded by a Px (n = 4) or not (n = 4). RESULTS: After the 2-month HFHSD, there was no discernible change between the GL and O minipigs. The pancreatectomized group in GL minipigs showed a significantly lower Acute Insulin Response (AIR) (18.3 ± 10.0 IU/mL after Px vs. 34.9 ± 13.7 IU/mL before, p < .0005). In both long-term intraportal infusion groups, an increase in the Insulinogenic (IGI) and Hepatic Insulin Resistance Indexes (HIRI) was found with a decrease in the AIR, especially in the pancreatectomized group (IGI: 4.2 ± 1.9 after vs. 1.5 ± 0.8 before, p < .05; HIRI (×10-5 ): 12.6 ± 7.9 after vs. 3.8 ± 4.3 before, p < .05; AIR: 24.4 ± 13.7 µIU/mL after vs. 43.9 ± 14.5 µIU/mL before, p < .005). Regardless of the group, there was no fasting hyperglycemia. CONCLUSIONS: In this study, we used pancreatectomy followed by long-term intraportal glucose and lipid infusions to develop an original minipig model with metabolic syndrome and early signs of glucose intolerance. We reaffirm the pig's usefulness as a preclinical model for the metabolic syndrome but without the fasting hyperglycemia that characterizes diabetes mellitus.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Insulin Resistance , Metabolic Syndrome , Animals , Swine , Glucose/metabolism , Glucose/pharmacology , Swine, Miniature/metabolism , Insulin Secretion , Pancreatectomy , Insulin/metabolism , Blood Glucose/metabolism , Hyperglycemia/metabolism , Homeostasis , Lipids
2.
Am J Physiol Endocrinol Metab ; 320(4): E772-E783, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33491532

ABSTRACT

The alimentary limb has been proposed to be a key driver of the weight-loss-independent metabolic improvements that occur upon bariatric surgery. However, the one anastomosis gastric bypass (OAGB) procedure, consisting of one long biliary limb and a short common limb, induces similar beneficial metabolic effects compared to Roux-en-Y Gastric Bypass (RYGB) in humans, despite the lack of an alimentary limb. The aim of this study was to assess the role of the length of biliary and common limbs in the weight loss and metabolic effects that occur upon OAGB. OAGB and sham surgery, with or without modifications of the length of either the biliary limb or the common limb, were performed in Gottingen minipigs. Weight loss, metabolic changes, and the effects on plasma and intestinal bile acids (BAs) were assessed 15 days after surgery. OAGB significantly decreased body weight, improved glucose homeostasis, increased postprandial GLP-1 and fasting plasma BAs, and qualitatively changed the intestinal BA species composition. Resection of the biliary limb prevented the body weight loss effects of OAGB and attenuated the postprandial GLP-1 increase. Improvements in glucose homeostasis along with changes in plasma and intestinal BAs occurred after OAGB regardless of the biliary limb length. Resection of only the common limb reproduced the glucose homeostasis effects and the changes in intestinal BAs. Our results suggest that the changes in glucose metabolism and BAs after OAGB are mainly mediated by the length of the common limb, whereas the length of the biliary limb contributes to body weight loss.NEW & NOTEWORTHY Common limb mediates postprandial glucose metabolism change after gastric bypass whereas biliary limb contributes to weight loss.


Subject(s)
Bile Acids and Salts/metabolism , Biliary Tract/pathology , Common Bile Duct/pathology , Gastric Bypass/methods , Glucose/metabolism , Anastomosis, Surgical/methods , Animals , Bile Acids and Salts/blood , Biliary Tract/metabolism , Biliary Tract Surgical Procedures/methods , Blood Glucose/metabolism , Common Bile Duct/metabolism , Common Bile Duct/surgery , Female , Models, Animal , Obesity, Morbid/metabolism , Obesity, Morbid/surgery , Postprandial Period , Random Allocation , Swine , Swine, Miniature , Weight Loss/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...