Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Dev Neurobiol ; 84(2): 47-58, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38466218

ABSTRACT

In sexually dimorphic zebra finches (Taeniopygia guttata), only males learn to sing their father's song, whereas females learn to recognize the songs of their father or mate but cannot sing themselves. Memory of learned songs is behaviorally expressed in females by preferring familiar songs over unfamiliar ones. Auditory association regions such as the caudomedial mesopallium (CMM; or caudal mesopallium) have been shown to be key nodes in a network that supports preferences for learned songs in adult females. However, much less is known about how song preferences develop during the sensitive period of learning in juvenile female zebra finches. In this study, we used blood-oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to trace the development of a memory-based preference for the father's song in female zebra finches. Using BOLD fMRI, we found that only in adult female zebra finches with a preference for learned song over novel conspecific song, neural selectivity for the father's song was localized in the thalamus (dorsolateral nucleus of the medial thalamus; part of the anterior forebrain pathway, AFP) and in CMM. These brain regions also showed a selective response in juvenile female zebra finches, although activation was less prominent. These data reveal that neural responses in CMM, and perhaps also in the AFP, are shaped during development to support behavioral preferences for learned songs.


Subject(s)
Finches , Vocalization, Animal , Male , Animals , Female , Vocalization, Animal/physiology , alpha-Fetoproteins/metabolism , Finches/metabolism , Acoustic Stimulation/methods , Auditory Perception/physiology , Prosencephalon/metabolism , Magnetic Resonance Imaging/methods
2.
Sci Rep ; 14(1): 5781, 2024 03 09.
Article in English | MEDLINE | ID: mdl-38461197

ABSTRACT

Juvenile male zebra finches (Taeniopygia guttata) must be exposed to an adult tutor during a sensitive period to develop normal adult song. The pre-motor nucleus HVC (acronym used as a proper name), plays a critical role in song learning and production (cf. Broca's area in humans). In the human brain, left-side hemispheric dominance in some language regions is positively correlated with proficiency in linguistic skills. However, it is unclear whether this pattern depends upon language learning, develops with normal maturation of the brain, or is the result of pre-existing functional asymmetries. In juvenile zebra finches, even though both left and right HVC contribute to song production, baseline molecular activity in HVC is left-dominant. To test if HVC exhibits hemispheric dominance prior to song learning, we raised juvenile males in isolation from adult song and measured neuronal activity in the left and right HVC upon first exposure to an auditory stimulus. Activity in the HVC was measured using the immediate early gene (IEG) zenk (acronym for zif-268, egr-1, NGFI-a, and krox-24) as a marker for neuronal activity. We found that neuronal activity in the HVC of juvenile male zebra finches is not lateralized when raised in the absence of adult song, while normally-reared juvenile birds are left-dominant. These findings show that there is no pre-existing asymmetry in the HVC prior to song exposure, suggesting that lateralization of the song system depends on learning through early exposure to adult song and subsequent song-imitation practice.


Subject(s)
Finches , Animals , Male , Humans , Finches/physiology , Vocalization, Animal/physiology , Learning/physiology , Brain/physiology , Genes, Immediate-Early
3.
Commun Biol ; 6(1): 345, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997617

ABSTRACT

Sensory experiences in early development shape higher cognitive functions such as language acquisition in humans and song learning in birds. Zebra finches (Taeniopygia guttata) sequentially exposed to two different song 'tutors' during the sensitive period in development are able to learn from their second tutor and eventually imitate aspects of his song, but the neural substrate involved in learning a second song is unknown. We used fMRI to examine neural activity associated with learning two songs sequentially. We found that acquisition of a second song changes lateralization of the auditory midbrain. Interestingly, activity in the caudolateral Nidopallium (NCL), a region adjacent to the secondary auditory cortex, was related to the fidelity of second-song imitation. These findings demonstrate that experience with a second tutor can permanently alter neural activity in brain regions involved in auditory perception and song learning.


Subject(s)
Auditory Cortex , Finches , Animals , Humans , Magnetic Resonance Imaging , Auditory Cortex/diagnostic imaging , Auditory Perception , Cognition , Vocalization, Animal
4.
Brain Res ; 1732: 146679, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31981678

ABSTRACT

The plasticity that facilitates learning during critical (sensitive) periods in development is tightly regulated by inhibitory neurons. Song acquisition in birds is one example of a learning process that occurs during a sensitive period early in development. Sensory experience with a song 'tutor' during this sensitive period prunes excitatory and inhibitory synapses in the song production nucleus HVC (proper noun). Neurons in the caudomedial nidopallium (NCM), a secondary auditory region, lose their tutor song selectivity when gamma-aminobutyric acid (GABA) signaling is blocked. Given the importance of inhibition in the song learning process, we investigated whether individual differences in learning outcomes can be explained by the distribution of specific populations of (mostly) inhibitory neurons in HVC and NCM. We measured the densities of distinct neuronal populations (defined by their expression of the calcium-binding proteins calbindin, calretinin, and parvalbumin) in these two regions. We found that lateralization of calbindin-positive neurons was related to successful song learning: good learners were characterized by hemispheric asymmetry of calbindin-positive neurons in the medial NCM (fewer CB+ neurons in the left hemisphere), whereas poor learners did not show any asymmetry. In contrast, the density of all three neuronal populations in HVC did not differ between good and poor learners. These findings not only identify a specific (presumably) inhibitory cell type (calbindin-expressing neurons) that is related to song learning, but also emphasize the role of hemispheric asymmetry in auditory memory formation.


Subject(s)
Auditory Cortex/metabolism , Calbindins/metabolism , Finches/physiology , Functional Laterality/physiology , Imitative Behavior/physiology , Neurons/metabolism , Vocalization, Animal/physiology , Animals , Learning/physiology , Male
5.
Neurosci Lett ; 718: 134730, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31899312

ABSTRACT

In humans and songbirds, neuronal activation for language and song shifts from bilateral- or diffuse-activation to left-hemispheric dominance while proficiency increases. Further parallels exist at the behavioural level: unstructured juvenile vocalizations become highly stereotyped adult vocalizations through a process of trial and error learning. Greater left-hemispheric dominance in the songbird caudomedial Nidopallium (NCM), a Wernicke-like region, is related to better imitation of the tutor's song learned early in development, indicating a role for the left NCM in forming auditory memories. Here, we hypothesize that inhibition of the left NCM during interaction with a song tutor would impair imitation of the tutor's song more than inhibition of the right NCM. We infused a transient sodium channel blocker (TTX) immediately prior to tutoring sessions in either the left or right auditory lobule of previously isolated juvenile male zebra finches (Taeniopygia guttata). Upon maturation, both right-infused and left-infused birds' tutor song imitation was significantly impaired. Left-infused birds also showed less consistency in the rhythmic stability of their song as well as increased pitch, suggesting a subtle division of function between the left and right auditory lobules.


Subject(s)
Auditory Cortex/physiology , Learning/physiology , Neurons/physiology , Vocalization, Animal/physiology , Acoustic Stimulation , Animals , Finches/physiology , Male , Memory/physiology , Songbirds/physiology
6.
Behav Processes ; 163: 5-12, 2019 Jun.
Article in English | MEDLINE | ID: mdl-28743517

ABSTRACT

Male zebra finches, Taeniopygia guttata, acquire their song during a sensitive period for auditory-vocal learning by imitating conspecific birds. Laboratory studies have shown that the sensitive period for song acquisition covers a developmental phase lasting from 25 to 65days post hatch (dph); formation of auditory memory primarily occurs between 25 and 35dph. The duration of the sensitive period is, however, dependent upon model availability. If a tutor is not available early in development, birds will learn from an adult male introduced to their cage even after they reach 65dph. Birds who are exposed to a second tutor as late as 63dph can successfully adjust their song 'template' to learn a new song model. However, if second-tutor song exposure occurs after 65dph, learning of a new tutor's song will not occur for most individuals. Here, we review the literature as well as novel studies from our own laboratory concerning sensitive periods for auditory memory formation in zebra finches; these behavioral studies indicate that there are developmental constraints on imitative learning in zebra finches.


Subject(s)
Critical Period, Psychological , Finches/physiology , Imitative Behavior , Learning , Vocalization, Animal , Animals
7.
Neuroscience ; 330: 395-402, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27288718

ABSTRACT

In monolingual humans, language-related brain activation shows a distinct lateralized pattern, in which the left hemisphere is often dominant. Studies are not as conclusive regarding the localization of the underlying neural substrate for language in sequential language learners. Lateralization of the neural substrate for first and second language depends on a number of factors including proficiency and early experience with each language. Similar to humans learning speech, songbirds learn their vocalizations from a conspecific tutor early in development. Here, we show mirrored patterns of lateralization in the avian analog of the mammalian auditory cortex (the caudomedial nidopallium [NCM]) in sequentially tutored zebra finches (Taeniopygia guttata​) in response to their first tutor song, learned early in development, and their second tutor song, learned later in development. The greater the retention of song from their first tutor, the more right-dominant the birds were when exposed to that song; the more birds learned from their second tutor, the more left-dominant they were when exposed to that song. Thus, the avian auditory cortex may preserve lateralized neuronal traces of old and new tutor song memories, which are dependent on proficiency of song learning. There is striking resemblance in humans: early-formed language representations are maintained in the brain even if exposure to that language is discontinued. The switching of hemispheric dominance related to the acquisition of early auditory memories and subsequent encoding of more recent memories may be an evolutionary adaptation in vocal learners necessary for the behavioral flexibility to acquire novel vocalizations, such as a second language.


Subject(s)
Auditory Cortex/physiology , Finches/physiology , Functional Laterality/physiology , Memory/physiology , Neurons/physiology , Vocalization, Animal/physiology , Acoustic Stimulation , Animals , Auditory Cortex/growth & development , Avian Proteins/metabolism , Finches/growth & development , Immediate-Early Proteins/metabolism , Immunohistochemistry , Learning/physiology , Male , Models, Animal , Time Factors
8.
Dev Neurobiol ; 76(11): 1213-1225, 2016 11.
Article in English | MEDLINE | ID: mdl-26898771

ABSTRACT

Sensory feedback is essential for acquiring and maintaining complex motor behaviors, including birdsong. In zebra finches, auditory feedback reaches the song control circuits primarily through the nucleus interfacialis nidopalii (Nif), which provides excitatory input to HVC (proper name)-a premotor region essential for the production of learned vocalizations. Despite being one of the major inputs to the song control pathway, the role of Nif in generating vocalizations is not well understood. To address this, we transiently inactivated Nif in late juvenile zebra finches. Upon Nif inactivation (in both hemispheres or on one side only), birds went from singing stereotyped zebra finch song to uttering highly variable and unstructured vocalizations resembling sub-song, an early juvenile song form driven by a basal ganglia circuit. Simultaneously inactivating Nif and LMAN (lateral magnocellular nucleus of the anterior nidopallium), the output nucleus of a basal ganglia circuit, inhibited song production altogether. These results suggest that Nif is required for generating the premotor drive for song. Permanent Nif lesions, in contrast, have only transient effects on vocal production, with song recovering within a day. The sensorimotor nucleus Nif thus produces a premotor drive to the motor pathway that is acutely required for generating learned vocalizations, but once permanently removed, the song system can compensate for its absence. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1213-1225, 2016.


Subject(s)
Feedback, Sensory/physiology , Finches/physiology , Learning/physiology , Sensorimotor Cortex/physiology , Vocalization, Animal/physiology , Animals , Finches/growth & development , Male , Sensorimotor Cortex/growth & development
9.
Nature ; 528(7582): 358-63, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26649821

ABSTRACT

Rapid and reversible manipulations of neural activity in behaving animals are transforming our understanding of brain function. An important assumption underlying much of this work is that evoked behavioural changes reflect the function of the manipulated circuits. We show that this assumption is problematic because it disregards indirect effects on the independent functions of downstream circuits. Transient inactivations of motor cortex in rats and nucleus interface (Nif) in songbirds severely degraded task-specific movement patterns and courtship songs, respectively, which are learned skills that recover spontaneously after permanent lesions of the same areas. We resolve this discrepancy in songbirds, showing that Nif silencing acutely affects the function of HVC, a downstream song control nucleus. Paralleling song recovery, the off-target effects resolved within days of Nif lesions, a recovery consistent with homeostatic regulation of neural activity in HVC. These results have implications for interpreting transient circuit manipulations and for understanding recovery after brain lesions.


Subject(s)
Artifacts , Neural Pathways/physiology , Optogenetics , Animals , Courtship , Female , Finches/physiology , Homeostasis , Learning/physiology , Male , Motor Cortex/cytology , Motor Cortex/injuries , Motor Cortex/physiology , Movement/physiology , Neostriatum/cytology , Neostriatum/injuries , Neostriatum/physiology , Optogenetics/methods , Psychomotor Performance/physiology , Rats, Long-Evans , Vocalization, Animal/physiology
10.
Sci Rep ; 5: 11359, 2015 Jun 22.
Article in English | MEDLINE | ID: mdl-26098840

ABSTRACT

Many aspects of song learning in songbirds resemble characteristics of speech acquisition in humans. Genetic, anatomical and behavioural parallels have most recently been extended with demonstrated similarities in hemispheric dominance between humans and songbirds: the avian higher order auditory cortex is left-lateralized for processing song memories in juvenile zebra finches that already have formed a memory of their fathers' song, just like Wernicke's area in the left hemisphere of the human brain is dominant for speech perception. However, it is unclear if hemispheric specialization is due to pre-existing functional asymmetry or the result of learning itself. Here we show that in juvenile male and female zebra finches that had never heard an adult song before, neuronal activation after initial exposure to a conspecific song is bilateral. Thus, like in humans, hemispheric dominance develops with vocal proficiency. A left-lateralized functional system that develops through auditory-vocal learning may be an evolutionary adaptation that could increase the efficiency of transferring information within one hemisphere, benefiting the production and perception of learned communication signals.


Subject(s)
Dominance, Cerebral/physiology , Learning/physiology , Neurons/physiology , Songbirds/physiology , Vocalization, Animal/physiology , Acoustic Stimulation , Animals , Auditory Cortex/physiology , Early Growth Response Protein 1/metabolism , Mammals/physiology
11.
Sci Rep ; 5: 9041, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25761654

ABSTRACT

There are striking behavioural and neural parallels between the acquisition of speech in humans and song learning in songbirds. In humans, language-related brain activation is mostly lateralised to the left hemisphere. During language acquisition in humans, brain hemispheric lateralisation develops as language proficiency increases. Sleep is important for the formation of long-term memory, in humans as well as in other animals, including songbirds. Here, we measured neuronal activation (as the expression pattern of the immediate early gene ZENK) during sleep in juvenile zebra finch males that were still learning their songs from a tutor. We found that during sleep, there was learning-dependent lateralisation of spontaneous neuronal activation in the caudomedial nidopallium (NCM), a secondary auditory brain region that is involved in tutor song memory, while there was right hemisphere dominance of neuronal activation in HVC (used as a proper name), a premotor nucleus that is involved in song production and sensorimotor learning. Specifically, in the NCM, birds that imitated their tutors well were left dominant, while poor imitators were right dominant, similar to language-proficiency related lateralisation in humans. Given the avian-human parallels, lateralised neural activation during sleep may also be important for speech and language acquisition in human infants.


Subject(s)
Brain/physiology , Dominance, Cerebral , Learning , Sleep , Songbirds/physiology , Animals , Gene Expression , Genes, Immediate-Early , Male , Neurons/metabolism
12.
Nat Neurosci ; 15(10): 1454-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22983208

ABSTRACT

Premotor circuits help generate imitative behaviors and can be activated during observation of another animal's behavior, leading to speculation that these circuits participate in sensory learning that is important to imitation. Here we tested this idea by focally manipulating the brain activity of juvenile zebra finches, which learn to sing by memorizing and vocally copying the song of an adult tutor. Tutor song-contingent optogenetic or electrical disruption of neural activity in the pupil's song premotor nucleus HVC prevented song copying, indicating that a premotor structure important to the temporal control of birdsong also helps encode the tutor song. In vivo multiphoton imaging and neural manipulations delineated a pathway and a candidate synaptic mechanism through which tutor song information is encoded by premotor circuits. These findings provide evidence that premotor circuits help encode sensory information about the behavioral model before shaping and executing imitative behaviors.


Subject(s)
Brain/physiology , Imitative Behavior/physiology , Learning/physiology , Singing/physiology , Animals , Finches , Microscopy, Fluorescence, Multiphoton/methods , Microscopy, Fluorescence, Multiphoton/psychology , Models, Neurological , Neural Pathways/physiology , Optogenetics/methods , Optogenetics/psychology
13.
PLoS One ; 7(7): e41556, 2012.
Article in English | MEDLINE | ID: mdl-22848527

ABSTRACT

Like many other songbird species, male zebra finches learn their song from a tutor early in life. Song learning in birds has strong parallels with speech acquisition in human infants at both the behavioral and neural levels. Forebrain nuclei in the 'song system' are important for the sensorimotor acquisition and production of song, while caudomedial pallial brain regions outside the song system are thought to contain the neural substrate of tutor song memory. Here, we exposed three groups of adult zebra finch males to either tutor song, to their own song, or to novel conspecific song. Expression of the immediate early gene protein product Zenk was measured in the song system nuclei HVC, robust nucleus of the arcopallium (RA) and Area X. There were no significant differences in overall Zenk expression between the three groups. However, Zenk expression in the HVC was significantly positively correlated with the strength of song learning only in the group that was exposed to the bird's own song, not in the other two groups. These results suggest that the song system nucleus HVC may contain a neural representation of a memory of the bird's own song. Such a representation may be formed during juvenile song learning and guide the bird's vocal output.


Subject(s)
Brain/physiology , Learning/physiology , Neurons/metabolism , Vocalization, Animal/physiology , Animals , Avian Proteins/biosynthesis , Brain/cytology , Early Growth Response Protein 1/biosynthesis , Finches , Gene Expression Regulation/physiology , Humans , Male , Nerve Tissue Proteins/biosynthesis , Neurons/cytology
14.
Proc Natl Acad Sci U S A ; 109(31): 12782-7, 2012 Jul 31.
Article in English | MEDLINE | ID: mdl-22802637

ABSTRACT

Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca's area in the frontal lobe and Wernicke's area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke's area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms.


Subject(s)
Dominance, Cerebral/physiology , Finches/physiology , Frontal Lobe/physiology , Learning/physiology , Speech Perception/physiology , Vocalization, Animal/physiology , Animals , Biological Evolution , Humans , Infant , Male , Species Specificity
15.
Proc Biol Sci ; 277(1698): 3343-51, 2010 Nov 07.
Article in English | MEDLINE | ID: mdl-20534608

ABSTRACT

Songbird males learn to sing their songs from an adult 'tutor' early in life, much like human infants learn to speak. Similar to humans, in the songbird brain there are separate neural substrates for vocal production and for auditory memory. In adult songbirds, the caudal pallium, the avian equivalent of the auditory association cortex, has been proposed to contain the neural substrate of tutor song memory, while the song system is involved in song production as well as sensorimotor learning. If this hypothesis is correct, there should be neuronal activation in the caudal pallium, and not in the song system, while the young bird is hearing the tutor song. We found increased song-induced molecular neuronal activation, measured as the expression of an immediate early gene, in the caudal pallium of juvenile zebra finch males that were in the process of learning to sing their songs. No such activation was found in the song system. Molecular neuronal activation was significantly greater in response to tutor song than to novel song or silence in the medial part of the caudomedial nidopallium (NCM). In the caudomedial mesopallium, there was significantly greater molecular neuronal activation in response to tutor song than to silence. In addition, in the NCM there was a significant positive correlation between spontaneous molecular neuronal activation and the strength of song learning during sleep. These results suggest that the caudal pallium contains the neural substrate for tutor song memory, which is activated during sleep when the young bird is in the process of learning its song. The findings provide insight into the formation of auditory memories that guide vocal production learning, a process fundamental for human speech acquisition.


Subject(s)
Brain/physiology , Learning/physiology , Memory/physiology , Songbirds/physiology , Vocalization, Animal/physiology , Acoustic Stimulation , Animals , Genes, Immediate-Early/genetics , Genes, Immediate-Early/physiology , Immunohistochemistry , Male , Neurons/physiology , Songbirds/genetics , Tape Recording
16.
J Comp Neurol ; 516(4): 312-20, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19637285

ABSTRACT

In zebra finches (Taeniopygia guttata), as in most other songbird species, there are robust sex differences in brain morphology and vocal behavior. First, male zebra finches have larger song system nuclei--involved in sensorimotor learning and production of song--than females. Second, male zebra finches learn their song from a tutor, whereas female zebra finches develop a learned preference for the song of their father but do not sing themselves. Third, female zebra finches produce an unlearned "long call," while males learn their long call (which is different from that of females) from their song tutor. We investigated behavioral and molecular neuronal responsiveness to this sexually dimorphic communication signal. Behavioral responsiveness was quantified by measuring the number of calls and approaches in response to calls that were broadcast from a speaker. We quantified neuronal activation by measuring the number of neurons expressing Zenk, the protein product of the immediate early gene ZENK, in a number of different forebrain regions in response to male calls, to female calls, or to silence. In both sexes female calls evoked more calls and approaches than male calls. There was significantly greater Zenk expression in response to female calls compared to silence in the caudomedial nidopallium, caudomedial mesopallium, and the hippocampus in females, but not in males. Thus, male and female zebra finches both show a behavioral preference for female calls, but differential neuronal activation in response to sexually dimorphic calls.


Subject(s)
Auditory Perception/physiology , Behavior, Animal/physiology , Early Growth Response Protein 1/metabolism , Passeriformes/physiology , Vocalization, Animal/physiology , Animals , Association Learning/physiology , Avian Proteins/metabolism , Female , Male , Prosencephalon/metabolism , Sex Factors , Vocalization, Animal/classification
17.
J Exp Zool B Mol Dev Evol ; 312(6): 639-64, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19130597

ABSTRACT

The tetrapod limb provides several examples of heterochrony-changes in the timing of developmental events. These include species differences in the sequence of skeletal chondrogenesis, in gene transcription in the developing limbs, and in the relative time at which forelimb and hind limb buds develop. Here, we examine (i) phylogenetic trends in limb heterochrony; (ii) changes in developmental mechanisms that may lead to heterochrony; and (iii) the possible role that heterochrony plays in generating adaptive traits. We analyze the published literature and present preliminary data on turtle (Emys orbicularis) and bat (Rousettus amplexicaudatus) limb development. Teleosts, marsupials, and some urodeles show extreme timing differences between forelimb (or pectoral fin) and hind limb (or pelvic fin) development; this heterochrony may, in some cases, be adaptive. Published data on limb chondrogenesis reveal sequence elements that are strongly conserved (possibly owing to constraints); and others that vary between higher taxa (for unknown reasons). We find little evidence that chondrogenic sequences are modified by selection for limb functional traits. There are a few examples of developmental mechanisms that may be modified under heterochrony to produce adaptive changes in the limb (e.g. some cases of hyperphalangy or limb reduction). In conclusion, numerous examples of limb heterochrony have been recorded. However, few cases are obviously adaptive. Indeed, current data and methodologies make it difficult to identify the developmental changes, or selective pressures, that may underlie limb heterochrony. More integrative studies, including studies of heterochrony within populations, are needed to assess the role of timing shifts in limb evolution.


Subject(s)
Biological Evolution , Extremities/embryology , Limb Buds/embryology , Morphogenesis/physiology , Selection, Genetic , Vertebrates/embryology , Animals , Embryo, Mammalian , Embryo, Nonmammalian , Extremities/physiology , Limb Buds/physiology , Phylogeny , Species Specificity , Time Factors , Vertebrates/classification , Vertebrates/physiology
19.
PLoS One ; 3(9): e3184, 2008 Sep 10.
Article in English | MEDLINE | ID: mdl-18781203

ABSTRACT

BACKGROUND: Male songbirds learn their songs from an adult tutor when they are young. A network of brain nuclei known as the 'song system' is the likely neural substrate for sensorimotor learning and production of song, but the neural networks involved in processing the auditory feedback signals necessary for song learning and maintenance remain unknown. Determining which regions show preferential responsiveness to the bird's own song (BOS) is of great importance because neurons sensitive to self-generated vocalisations could mediate this auditory feedback process. Neurons in the song nuclei and in a secondary auditory area, the caudal medial mesopallium (CMM), show selective responses to the BOS. The aim of the present study is to investigate the emergence of BOS selectivity within the network of primary auditory sub-regions in the avian pallium. METHODS AND FINDINGS: Using blood oxygen level-dependent (BOLD) fMRI, we investigated neural responsiveness to natural and manipulated self-generated vocalisations and compared the selectivity for BOS and conspecific song in different sub-regions of the thalamo-recipient area Field L. Zebra finch males were exposed to conspecific song, BOS and to synthetic variations on BOS that differed in spectro-temporal and/or modulation phase structure. We found significant differences in the strength of BOLD responses between regions L2a, L2b and CMM, but no inter-stimuli differences within regions. In particular, we have shown that the overall signal strength to song and synthetic variations thereof was different within two sub-regions of Field L2: zone L2a was significantly more activated compared to the adjacent sub-region L2b. CONCLUSIONS: Based on our results we suggest that unlike nuclei in the song system, sub-regions in the primary auditory pallium do not show selectivity for the BOS, but appear to show different levels of activity with exposure to any sound according to their place in the auditory processing stream.


Subject(s)
Finches/physiology , Magnetic Resonance Imaging/methods , Prosencephalon/anatomy & histology , Acoustic Stimulation/methods , Animal Communication , Animals , Auditory Cortex/physiology , Auditory Pathways/physiology , Image Processing, Computer-Assisted , Male , Neurons/metabolism , Prosencephalon/physiology , Sound , Telencephalon/physiology , Time Factors , Vocalization, Animal/physiology
20.
Curr Biol ; 17(9): 789-93, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17433683

ABSTRACT

Songbirds learn their song from an adult conspecific tutor when they are young, much like the acquisition of speech in human infants. When an adult zebra finch is re-exposed to its tutor's song, there is increased neuronal activation in the caudomedial nidopallium (NCM), the songbird equivalent of the auditory association cortex. This neuronal activation is related to the fidelity of song imitation, suggesting that the NCM may contain the neural representation of song memory. We found that bilateral neurotoxic lesions to the NCM of adult male zebra finches impaired tutor-song recognition but did not affect the males' song production or their ability to discriminate calls. These findings demonstrate that the NCM performs an essential role in the representation of tutor-song memory. In addition, our results show that tutor-song memory and a motor program for the bird's own song have separate neural representations in the songbird brain. Thus, in both humans and songbirds, the cognitive systems of vocal production and auditory recognition memory are subserved by distinct brain regions.


Subject(s)
Auditory Cortex/physiology , Finches/physiology , Memory/physiology , Pattern Recognition, Physiological/physiology , Vocalization, Animal/physiology , Animals , Auditory Cortex/pathology , Immunohistochemistry , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...