Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Physiol ; 91(2-3): 137-54, 1993 Mar.
Article in English | MEDLINE | ID: mdl-8469840

ABSTRACT

We investigated the effect of increasing doses of intravenously infused glass microspheres (mean diameter 125 microns) on gas exchange in anesthetized, heparinized, mechanically ventilated goats (VT = 16-18 ml/kg). Breath-by-breath CO2 expirograms were collected using a computerized system (Study A) during the infusion of a total of 15 g of microspheres. We found a 50% decrease in extravascular lung water by indicator dilution with a corresponding doubling of alveolar dead space (VDalv). Airways deadspace (VDaw) decreased by 13 ml (10%) and mean normalized phase III slope for CO2 decreased from 0.23 to -0.08 L-1 becoming negative in 3 of 5 animals. In a second study (Study B), simultaneous breath-by-breath CO2 and infused SF6 expirograms were collected using an infrared CO2 analyzer and a mass spectrometer. Under baseline conditions VDaw for CO2 was smaller than for SF6 and the ratio of the phase III slope for SF6 to the phase III slope for CO2 was 1.39. Following embolization there were no differences in VDaw between the two gases, however, the phase III slope for CO2 became either slightly negative or extremely flat, while the phase III slope for SF6 became negative in 73% of the breaths (-0.17 L-1, P < 0.05). Negative phase III slopes have been predicted by a single path model when blood flow is confined to the most mouthward generations of the acinus (Schwardt et al., Ann. Biomed. Engin, 19: 679-697, 1991). The agreement between the numerical model and the experimental data is consistent with a serial distribution of blood flow within the acinus.


Subject(s)
Pulmonary Embolism/physiopathology , Pulmonary Gas Exchange/physiology , Animals , Carbon Dioxide , Goats , Microspheres , Pulmonary Circulation/physiology , Pulmonary Embolism/etiology , Respiratory Dead Space/physiology , Sulfur Hexafluoride
2.
Respir Physiol ; 88(3): 257-75, 1992 Jun.
Article in English | MEDLINE | ID: mdl-1615224

ABSTRACT

We studied the influence of acinar morphometry on the shape of simulated expirograms computed from a single path convection-diffusion model that includes a source term for gas evolution from the blood (Scherer et al., J. Appl. Physiol. 64: 1022-1029, 1988). Acinar structure was obtained from published data of 3 different lung morphometries. The simulations were performed over a range of tidal volumes (VT) and breathing frequencies (f) comparable to those observed in a previously reported human study. Airways dead space (VDaw) increased with VT in all the morphometric models tested and in the experimental data. The increase in VDaw with VT was inversely related to the diffusivity of the evolving gas and to the rate of increase in airway cross-section of the most mouthward (proximal) alveolated generations of the models. Normalized phase III slope for all the gases decreased with increasing VT in all the models as was previously reported for healthy human subjects. In the model simulations, the greatest sensitivity of phase III slope to VT was seen with the least diffusible gas using the airway morphometry with the smallest cross-sectional areas in the proximal alveolated generations. We conclude that both VDaw and phase III slope of an evolving gas are sensitive to the geometry of the proximal acinar airways and that this is manifest by their dependence on tidal volume, breathing frequency, molecular diffusivity and alveolar/blood source emission rate. The model simulations indicate that heterogeneity of gas washout is not required to explain the magnitude of the phase III slope in healthy human subjects.


Subject(s)
Carbon Dioxide/metabolism , Helium/metabolism , Lung/physiology , Sulfur Hexafluoride/metabolism , Computer Simulation , Humans , Lung/anatomy & histology , Models, Biological , Respiration/physiology , Tidal Volume
3.
Ann Biomed Eng ; 19(6): 679-97, 1991.
Article in English | MEDLINE | ID: mdl-1781569

ABSTRACT

A numerical solution of the convection-diffusion equation with an alveolar source term in a single-path model (SPM) of the lung airways simulates steady state CO2 washout. The SPM is used to examine the effects of independent changes in physiologic and acinar structure parameters on the slope and height of Phase III of the single-breath CO2 washout curve. The parameters investigated include tidal volume, breathing frequency, total cardiac output, pulmonary arterial CO2 tension, functional residual capacity, pulmonary bloodflow distribution, alveolar volume, total acinar airway cross sectional area, and gas-phase molecular diffusivity. Reduced tidal volume causes significant steepening of Phase III, which agrees well with experimental data. Simulations with a fixed frequency and tidal volume show that changes in blood-flow distribution, model airway cross section, and gas diffusivity strongly affect the slope of Phase III while changes in cardiac output and in pulmonary arterial CO2 tension strongly affect the height of Phase III. The paper also discusses differing explanations for the slope of Phase III, including sequential emptying, stratified inhomogeneity, and the issue of asymmetry, in the context of the SPM.


Subject(s)
Carbon Dioxide/metabolism , Lung/physiology , Pulmonary Gas Exchange/physiology , Diffusion , Humans , Lung/anatomy & histology , Mathematics , Models, Anatomic , Models, Biological
4.
Ann Biomed Eng ; 16(5): 429-43, 1988.
Article in English | MEDLINE | ID: mdl-3189973

ABSTRACT

A model is presented that relates the change in baroreceptor firing rate to a step change in blood pressure. This relationship is nonlinear since the alteration in rate of firing depends on the current rate of firing. It is shown that this simple relationship embodies all currently established baroreceptor response modes. The model needs refinement to allow for effects arising from the properties of the tissue matrix in which the receptors are embedded. Further analysis is precluded at present owing to paucity of quantitative experimental data.


Subject(s)
Blood Pressure , Models, Cardiovascular , Pressoreceptors/physiology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...