Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9191, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649400

ABSTRACT

Current low coherence quantitative phase microscopy (LC-QPM) systems suffer from either reduced field of view (FoV) or reduced temporal resolution due to the short temporal coherence (TC) length of the light source. Here, we propose a hybrid, experimental and numerical approach to address this core problem associated with LC-QPM. We demonstrate high spatial resolution and high phase sensitivity in LC-QPM at high temporal resolution. High space-time bandwidth product is achieved by employing incoherent light source for sample illumination in QPM to increase the spatial resolution and single-shot Hilbert spiral transform (HST) based phase recovery algorithm to enhance the temporal resolution without sacrificing spatial resolution during the reconstruction steps. The high spatial phase sensitivity comes by default due to the use of incoherent light source in QPM which has low temporal coherence length and does not generate speckle noise and coherent noise. The spatial resolution achieved by the HST is slightly inferior to the temporal phase-shifting (TPS) method when tested on a specimen but surpasses that of the single-shot Fourier transform (FT) based phase recovery method. Contrary to HST method, FT method requires high density fringes for lossless phase recovery, which is difficult to achieve in LC-QPM over entire FoV. Consequently, integration of HST algorithm with LC-QPM system makes an attractive route. Here, we demonstrate scalable FoV and resolution in single-shot LC-QPM and experimentally corroborate it on a test object and on both live and fixed biological specimen such as MEF, U2OS and human red blood cells (RBCs). LC-QPM system with HST reconstruction offer high-speed single-shot QPM imaging at high phase sensitivity and high spatial resolution enabling us to study sub-cellular dynamic inside U2OS for extended duration (3 h) and observe high-speed (50 fps) dynamics of human RBCs. The experimental results validate the effectiveness of the present approach and will open new avenues in the domain of biomedical imaging in the future.

2.
Opt Express ; 29(20): 31632-31649, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34615253

ABSTRACT

Fringe pattern analysis is the central aspect of numerous optical measurement methods, e.g., interferometry, fringe projection, digital holography, quantitative phase microscopy. Experimental fringe patterns always contain significant features originating from fluctuating environment, optical system and illumination quality, and the sample itself that severely affect analysis outcome. Before the stage of phase retrieval (information decoding) interferogram needs proper filtering, which minimizes the impact of mentioned issues. In this paper we propose fully automatic and adaptive fringe pattern pre-processing technique - improved period guided bidimensional empirical mode decomposition algorithm (iPGBEMD). It is based on our previous work about PGBEMD which eliminated the mode-mixing phenomenon and made the empirical mode decomposition fully adaptive. In present work we overcame key problems of original PGBEMD - we have considerably increased algorithm's application range and shortened computation time several-fold. We proposed three solutions to the problem of erroneous decomposition for very low fringe amplitude images, which limited original PGBEMD significantly and we have chosen the best one among them after comprehensive analysis. Several acceleration methods were also proposed and merged to ensure the best results. We combined our improved pre-processing algorithm with the Hilbert Spiral Transform to receive complete, consistent, and versatile fringe pattern analysis path. Quality and effectiveness evaluation, in comparison with selected reference methods, is provided using numerical simulations and experimental fringe data.

3.
Biomed Opt Express ; 12(7): 4219-4234, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34457410

ABSTRACT

In this work we propose an open-top like common-path intrinsically achromatic optical diffraction tomography system. It operates as a total-shear interferometer and employs Ronchi-type amplitude diffraction grating, positioned in between the camera and the tube lens without an additional 4f system, generating three-beam interferograms with achromatic second harmonic. Such configuration makes the proposed system low cost, compact and immune to vibrations. We present the results of the measurements of 3D-printed cell phantom using laser diode (coherent) and superluminescent diode (partially coherent) light sources. Broadband light sources can be naturally employed without the need for any cumbersome compensation because of the intrinsic achromaticity of the interferometric recording (holograms generated by -1st and +1st conjugated diffraction orders are not affected by the illumination wavelength). The results show that the decreased coherence offers much reduced coherent noise and higher fidelity tomographic reconstruction especially when applied nonnegativity constraint regularization procedure.

4.
Opt Express ; 28(5): 6277-6293, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32225880

ABSTRACT

Fringe patterns encode the information about the result of a measurement performed via widely used optical full-field testing methods, e.g., interferometry, digital holographic microscopy, moiré techniques, structured illumination etc. Affected by the optical setup, changing environment and the sample itself fringe patterns are often corrupted with substantial noise, strong and uneven background illumination and exhibit low contrast. Fringe pattern enhancement, i.e., noise minimization and background term removal, at the pre-processing stage prior to the phase map calculation (for the measurement result decoding) is therefore essential to minimize the jeopardizing effect the mentioned error sources have on the optical measurement outcome. In this contribution we propose an automatic, robust and highly effective fringe pattern enhancement method based on the novel period-guided bidimensional empirical mode decomposition algorithm (PG-BEMD). The spatial distribution of the fringe period is estimated using the novel windowed approach and then serves as an indicator for the truly adaptive decomposition with the filter size locally adjusted to the fringe pattern density. In this way the fringe term is successfully extracted in a single (first) decomposition component alleviating the cumbersome mode mixing phenomenon and greatly simplifying the automatic signal reconstruction. Hence, the fringe term is dissected without the need for modes selection nor summation. The noise removal robustness is ensured employing the block matching 3D filtering of the fringe pattern prior to its decomposition. Performance validation against previously reported modified empirical mode decomposition techniques is provided using numerical simulations and experimental data verifying the versatility and effectiveness of the proposed approach.

SELECTION OF CITATIONS
SEARCH DETAIL