Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 12440, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35858891

ABSTRACT

Intermediate depth (70-300 km) and deep (> 300 km) earthquakes have always been puzzling Earth scientists: their occurrence is a paradox, since the ductile behavior of rocks and the high confining pressure with increasing depths would theoretically preclude brittle failure and frictional sliding. The mechanisms proposed to explain deep earthquakes, mainly depending on the subducting plate age and stress state, are generally expressed by single parameters, unsuitable to comprehensively account for differences among distinct subduction zones or within the same slab. We analyze the Kurile and Izu-Bonin intraslab seismicity and detail the Gutenberg-Richter b-value along the subducted planes, interpreting its variation in terms of stress state, analogously to what usually done for shallow earthquakes. We demonstrate that, despite the slabs different properties (e.g., lithospheric age, stress state, dehydration rate), in both cases deep earthquakes are restricted to depths characterized by equal age from subduction initiation and are driven by stress regimes affected by the persistence of the metastable olivine wedge.

2.
Entropy (Basel) ; 21(2)2019 Feb 13.
Article in English | MEDLINE | ID: mdl-33266889

ABSTRACT

An increase of seismic activity is often observed before large earthquakes. Events responsible for this increase are usually named foreshock and their occurrence probably represents the most reliable precursory pattern. Many foreshocks statistical features can be interpreted in terms of the standard mainshock-to-aftershock triggering process and are recovered in the Epidemic Type Aftershock Sequence ETAS model. Here we present a statistical study of instrumental seismic catalogs from four different geographic regions. We focus on some common features of foreshocks in the four catalogs which cannot be reproduced by the ETAS model. In particular we find in instrumental catalogs a significantly larger number of foreshocks than the one predicted by the ETAS model. We show that this foreshock excess cannot be attributed to catalog incompleteness. We therefore propose a generalized formulation of the ETAS model, the ETAFS model, which explicitly includes foreshock occurrence. Statistical features of aftershocks and foreshocks in the ETAFS model are in very good agreement with instrumental results.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(6 Pt 2): 066119, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23368016

ABSTRACT

We present a study of the earthquake intertime distribution D(Δt) for a California catalog in temporal periods of short duration T. We compare experimental results with theoretical predictions and analytical approximate solutions. For the majority of intervals, rescaling intertimes by the average rate leads to collapse of the distributions D(Δt) on a universal curve, whose functional form is well fitted by a Gamma distribution. The remaining intervals, exhibiting a more complex D(Δt), are all characterized by the presence of large shocks. These results can be understood in terms of the relevance of the ratio between the characteristic time c in the Omori law and T: Intervals with Gamma-like behavior are indeed characterized by a vanishing c/T. The above features are also investigated by means of numerical simulations of the Epidemic Type Aftershock Sequence (ETAS) model. This study shows that collapse of D(Δt) is also observed in numerical catalogs; however, the fit with a Gamma distribution is possible only assuming that c depends on the main-shock magnitude m. This result confirms that the dependence of c on m, previously observed for m>6 main shocks, extends also to small m>2.

4.
Phys Rev Lett ; 104(23): 238001, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20867271

ABSTRACT

The unjamming transition of granular systems is investigated in a seismic fault model via three dimensional molecular dynamics simulations. A two-time force-force correlation function, and a susceptibility related to the system response to pressure changes, allow us to characterize the stick-slip dynamics, consisting in large slips and microslips leading to creep motion. The correlation function unveils the micromechanical changes occurring both during microslips and slips. The susceptibility encodes the magnitude of the incoming microslip.

5.
Phys Rev Lett ; 98(9): 098501, 2007 Mar 02.
Article in English | MEDLINE | ID: mdl-17359207

ABSTRACT

We propose a branching process based on a dynamical scaling hypothesis relating time and mass. In the context of earthquake occurrence, we show that experimental power laws in size and time distribution naturally originate solely from this scaling hypothesis. We present a numerical protocol able to generate a synthetic catalog with an arbitrary large number of events. The numerical data reproduce the hierarchical organization in time and magnitude of experimental interevent time distribution.


Subject(s)
Computer Simulation , Disasters , Models, Theoretical , Neural Networks, Computer , Confined Spaces , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...