Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162691

ABSTRACT

Next-generation batteries based on more sustainable working ions could offer improved performance, safety, and capacity over lithium-ion batteries while also decreasing the cost. Development of next-generation battery technology using "beyond-Li" mobile ions, especially multivalent ions, is limited due to a lack of understanding of solid state conduction of these ions. Here, we introduce ligand-coordinated ions in MPS3-based (M = Mn, Cd) solid host crystals to simultaneously increase the size of the interlayer spacing, through which the ions can migrate, and screen the charge-dense ions. The ligand-assisted conduction mechanism enables ambient temperature superionic conductivity of various next-generation mobile ions in the electronically insulating MPS3-based solid. Without the coordinating ligands, all of the compounds show little to no ionic conductivity. Pulsed-field gradient nuclear magnetic resonance spectroscopy suggests that the ionic conduction occurs through a hopping mechanism, where the cations are moving between H2O molecules, instead of a vehicular mechanism which has been observed in other hydrated layered solids. This modular system not only facilitates tailoring to different potential applications but also enables us to probe the effect of different host structures, mobile ions, and coordinating ligands on the ionic conductivity. This research highlights the influence of cation charge density, diffusion channel size, and effective charge screening on ligand-assisted solid state ionic conductivity. The insights gained can be applied in the design of other ligand-assisted solid state ionic conductors, which will be especially impactful in realizing solid state multivalent ionic conductors. Additionally, the ion-intercalated MPS3-based frameworks could potentially serve as a universal solid state electrolyte for various next-generation battery chemistries.

2.
ACS Catal ; 14(13): 10295-10316, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38988649

ABSTRACT

Fe(II) carboxylates react with dioxygen and carboxylic acid to form Fe6(µ-OH)2(µ3-O)2(µ-X)12(HX)2 (X = acetate or pivalate), which is an active oxidant for Rh-catalyzed arene alkenylation. Heating (150-200 °C) the catalyst precursor [(η2-C2H4)2Rh(µ-OAc)]2 with ethylene, benzene, Fe(II) carboxylate, and dioxygen yields styrene >30-fold faster than the reaction with dioxygen in the absence of the Fe(II) carboxylate additive. It is also demonstrated that Fe6(µ-OH)2(µ3-O)2(µ-X)12(HX)2 is an active oxidant under anaerobic conditions, and the reduced material can be reoxidized to Fe6(µ-OH)2(µ3-O)2(µ-X)12(HX)2 by dioxygen. At optimized conditions, a turnover frequency of ∼0.2 s-1 is achieved. Unlike analogous reactions with Cu(II) carboxylate oxidants, which undergo stoichiometric Cu(II)-mediated production of phenyl esters (e.g., phenyl acetate) as side products at temperatures ≥150 °C, no phenyl ester side product is observed when Fe carboxylate additives are used. Kinetic isotope effect experiments using C6H6 and C6D6 give k H/k D = 3.5(3), while the use of protio or monodeutero pivalic acid reveals a small KIE with k H/k D = 1.19(2). First-order dependencies on Fe(II) carboxylate and dioxygen concentration are observed in addition to complicated kinetic dependencies on the concentration of carboxylic acid and ethylene, both of which inhibit the reaction rate at a high concentration. Mechanistic studies are consistent with irreversible benzene C-H activation, ethylene insertion into the formed Rh-Ph bond, ß-hydride elimination, and reaction of Rh-H with Fe6(µ-OH)2(µ3-O)2(µ-X)12(HX)2 to regenerate a Rh-carboxylate complex.

3.
J Chem Phys ; 161(1)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38953452

ABSTRACT

Electrochemical systems possess a considerable part of modern technologies, such as the operation of rechargeable batteries and the fabrication of electronic components, which are explored both experimentally and computationally. The largest gap between the experimental observations and atomic-level simulations is their orders-of-magnitude scale difference. While the largest computationally affordable scale of the atomic-level computations is ∼ns and ∼nm, the smallest reachable scale in the typical experiments, using very high-precision devices, is ∼s and ∼µm. In order to close this gap and correlate the studies in the two scales, we establish an equivalent simulation setup for the given general experiment, which excludes the microstructure effects (i.e., solid-electrolyte interface), using the coarse-grained framework. The developed equivalent paradigm constitutes the adjusted values for the equivalent length scale (i.e., lEQ), diffusivity (i.e., DEQ), and voltage (i.e., VEQ). The time scale for the formation and relaxation of the concentration gradients in the vicinity of the electrode matches for both smaller scale (i.e., atomistic) equivalent simulations and the larger scale (i.e., continuum) experiments and could be utilized for exploring the cluster-level inter-ionic events that occur during the extended time periods. The developed model could offer insights for forecasting experiment dynamics and estimating the transition period to the steady-state regime of operation.

4.
Article in English | MEDLINE | ID: mdl-38919050

ABSTRACT

The carbon monoxide reduction reaction (CORR) toward C2+ and C3+ products such as propylene and cyclopropane can not only reduce anthropogenic emissions of CO and CO2 but also produce value-added organic chemicals for polymer and pharmaceutical industries. Here, we introduce the concept of triple atom catalysts (TACs) that have three intrinsically strained and active metal centers for reducing CO to C3+ products. We applied grand canonical potential kinetics (GCP-K) to screen 12 transition metals (M) supported by nitrogen-doped graphene denoted as M3N7, where M stands for Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au. We sought catalysts with favorable CO binding, hydrogen binding, and C-C dimerization energetics, identifying Fe3N7 and Ir3N7 as the best candidates. We then studied the entire reaction mechanism from CO to C3H6 and C2H4 as a function of applied potential via, respectively, 12-electron and 8-electron transfer pathways on Fe3N7 and Ir3N7. Density functional theory (DFT) predicts an overpotential of 0.17 VRHE for Fe3N7 toward propylene and an overpotential of 0.42 VRHE toward cyclopropane at 298.15 K and pH = 7. Also, DFT predicts an overpotential of 0.15 VRHE for Ir3N7 toward ethylene. This work provides fundamental insights into the design of advanced catalysts for C2+ and C3+ synthesis at room temperature.

5.
J Phys Chem A ; 128(25): 5065-5076, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38870409

ABSTRACT

Efficient and accurate reactive force fields (e.g., ReaxFF) are pivotal for large-scale atomistic simulations to comprehend microscopic combustion processes. ReaxFF has been extensively utilized to describe chemical reactions in condensed phases, but most existing ReaxFF models rely on quantum mechanical (QM) data nearly two decades old, particularly in hydrocarbon systems, constraining their accuracy and applicability. Addressing this gap, we introduce a reparametrized ReaxFFCHO-S22 for C/H/O systems, tailored for studying the pyrolysis and combustion of hydrocarbon fuel. Our approach involves high-level QM benchmarks and large database construction for C/H/O systems, global ReaxFF parameter optimization, and molecular dynamics simulations of typical hydrocarbon fuels. Density functional theory (DFT) computations utilized the M06-2X functional at the meta-generalized gradient approximation (meta-GGA) level with a large basis set (6-311++G**). Our new ReaxFFCHO-S22 model exhibits a minimum 10% enhancement in accuracy compared to the previous ReaxFF models for a large variety of hydrocarbon molecules. This advanced ReaxFFCHO-S22 not only enables efficient large-scale studies on the microscopic chemical reactions of more complex hydrocarbon fuel but also can extend to biofuels, energetic materials, polymers, and other pertinent systems, thus serving as a valuable tool for studying chemical reaction dynamics of the large-scale hydrocarbon condensed phase at an atomistic level.

6.
Proc Natl Acad Sci U S A ; 121(20): e2402653121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38722808

ABSTRACT

The intrinsically disordered C-terminal peptide region of severe acute respiratory syndrome coronavirus 2 nonstructural protein-1 (Nsp1-CT) inhibits host protein synthesis by blocking messenger RNA (mRNA) access to the 40S ribosome entrance tunnel. Aqueous copper(II) ions bind to the disordered peptide with micromolar affinity, creating a possible strategy to restore protein synthesis during host infection. Electron paramagnetic resonance (EPR) and tryptophan fluorescence measurements on a 10-residue model of the disordered protein region (Nsp1-CT10), combined with advanced quantum mechanics calculations, suggest that the peptide binds to copper(II) as a multidentate ligand. Two optimized computational models of the copper(II)-peptide complexes were derived: One corresponding to pH 6.5 and the other describing the complex at pH 7.5 to 8.5. Simulated EPR spectra based on the calculated model structures are in good agreement with experimental spectra.


Subject(s)
Copper , Intrinsically Disordered Proteins , SARS-CoV-2 , Viral Nonstructural Proteins , Copper/chemistry , Copper/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Electron Spin Resonance Spectroscopy , Humans , Protein Binding , Models, Molecular , COVID-19/virology
7.
JACS Au ; 4(4): 1605-1614, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665641

ABSTRACT

Because of the excellent combination of high detonation and low sensitivity properties of the 1,1-diamino-2,2-dinitroethylene (FOX-7) energetic material (EM), it is useful to explore new energetic derivatives that start with the FOX-7 structure. However, most such derivatives are highly sensitive, making them unsuitable for EM applications. An exception is the new nitroenamine EM, 1,1-diamino-2-tetrazole-2-nitroethene (FOX-7-T) (synthesized by replacing a nitro group with a tetrazole ring), which exhibits good stability. Unfortunately, FOX-7-T shows an unexpected much lower detonation performance than FOX-7, despite its higher nitrogen content. To achieve an atomistic understanding of the insensitivity and detonation performance of FOX-7 and FOX-7-T, we carried out reactive molecular dynamics (RxMD) using the ReaxFF reactive force field and combined quantum mechanics MD (QM-MD). We found that the functional group plays a significant role in the initial decomposition reaction. For FOX-7, the initial decomposition involves only simple hydrogen transfer reactions at high temperature, whereas for FOX-7-T, the initial reaction begins at much lower temperature with a tetrazole ring breaking to form N2, followed by many subsequent reactions. Our first-principles-based simulations predicted that FOX-7-T has 34% lower CJ pressure, 15% lower detonation velocity, and 45% lower CJ temperature than FOX-7. This is partly because a larger portion of the FOX-7-T mass gets trapped into condensed phase carbon clusters at the CJ point, suppressing generation of gaseous CO2 and N2 final products, leading to reduced energy delivery. Our findings suggest that the oxygen balance is an important factor to be considered in the design of the next generation of high-nitrogen-containing EMs.

8.
J Am Chem Soc ; 146(17): 11719-11725, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38636103

ABSTRACT

The diversity of chemical environments present on unique crystallographic facets can drive dramatic differences in catalytic activity and the reaction mechanism. By coupling experimental investigations of five different IrO2 facets and theory, we characterize the detailed elemental steps of the surface redox processes and the rate-limiting processes for the oxygen evolution reaction (OER). The predicted complex evolution of surface adsorbates and the associated charge transfer as a function of applied potential matches well with the distinct redox features observed experimentally for the five facets. Our microkinetic model from grand canonical quantum mechanics (GC-QM) calculations demonstrates mechanistic differences between nucleophilic attack and O-O coupling across facets, providing the rates as a function of applied potential. These GC-QM calculations explain the higher OER activity observed on the (100), (001), and (110) facets and the lower activity observed for the (101) and (111) facets. This combined study with theory and experiment brings new insights into the structural features that either promote or hinder the OER activity of IrO2, which are expected to provide parallels in structural effects on other oxide surfaces.

9.
Langmuir ; 40(15): 8067-8073, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38557046

ABSTRACT

Nanocomposites made of magnetite (Fe3O4) nanoparticles (NP)s with different surface chemistry and polyvinyl difluoride (PVDF) polymer were investigated using full atom molecular dynamics (MD) simulation. NPs with hydroxyl (OH), hexanoic, and oleic acid terminations were considered in this study. The effect of each surface chemistry was investigated in terms of the mechanical properties, the distribution of the internal energy around the NP, and the chain polarization gradient from the interface to the bulk. From this investigation, we find that oleic acid termination, although the most popular, is less favorable for interfacial interaction and local polarization. The OH-terminated NP results in the best configuration for the properties investigated. The hexanoic acid-grafted NP presents a good compromise. Hydrogen bonding governs the induced response of the nanocomposites. Although the hexanoic acid grafted NP presents less hydrogen bonding than the OH-terminated case, the conformation of the hexanoic acid acts as a mobility flow inhibitor, leading to a performance comparable to that of the OH-terminated NP composite. This work led to investigating routes to make nanocomposite materials with optimized properties. These results shed light on the multiple combinations offered by nanocomposites that go beyond the conventional effects of size.

10.
Adv Sci (Weinh) ; 11(26): e2309883, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38687196

ABSTRACT

The design of high-entropy single-atom catalysts (HESAC) with 5.2 times higher entropy compared to single-atom catalysts (SAC) is proposed, by using four different metals (FeCoNiRu-HESAC) for oxygen reduction reaction (ORR). Fe active sites with intermetallic distances of 6.1 Å exhibit a low ORR overpotential of 0.44 V, which originates from weakening the adsorption of OH intermediates. Based on density functional theory (DFT) findings, the FeCoNiRu-HESAC with a nitrogen-doped sample were synthesized. The atomic structures are confirmed with X-ray photoelectron spectroscopy (XPS), X-ray absorption (XAS), and scanning transmission electron microscopy (STEM). The predicted high catalytic activity is experimentally verified, finding that FeCoNiRu-HESAC has overpotentials of 0.41 and 0.37 V with Tafel slopes of 101 and 210 mVdec-1 at the current density of 1 mA cm-2 and the kinetic current densities of 8.2 and 5.3 mA cm-2, respectively, in acidic and alkaline electrolytes. These results are comparable with Pt/C. The FeCoNiRu-HESAC is used for Zinc-air battery applications with an open circuit potential of 1.39 V and power density of 0.16 W cm-2. Therefore, a strategy guided by DFT is provided for the rational design of HESAC which can be replaced with high-cost Pt catalysts toward ORR and beyond.

11.
J Am Chem Soc ; 146(18): 12758-12765, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38682865

ABSTRACT

We report quantum mechanics calculations and quasiclassical trajectory simulations of [4 + 2] reactions using three common dienolate substrates: siloxy dienes, Li dienolates, and conjugated Pd enolates. Asynchronous transition structures and unequal bond formation were invariably found, with average time gaps of developing bonds ranging from 26.5 to >251.0 fs. The results display a spectrum of dynamically concerted and stepwise [4 + 2] reactions, offering insights into the origin of the stereochemical outcomes of such reactions.

12.
J Phys Chem A ; 128(17): 3339-3350, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38651289

ABSTRACT

Recently, pyrrole cages have been synthesized that encapsulate ion pairs and silver(I) clusters to form intricate supramolecular capsules. We report here a computational analysis of these structures using density functional theory combined with a semiempirical tight-binding approach. We find that for neutral pyrrole cages, the Gibbs free energies of formation provide reliable predictions for the ratio of bound ions. For charged pyrrole cages, we find strong argentophilic interactions between Ag ions on the basis of the calculated bond indices and molecular orbitals. For the cage with the Ag4 cluster, we find two minimum-geometry conformations that differ by only 6.5 kcal/mol, with an energy barrier <1 kcal/mol, suggesting a very flexible structure as indicated by molecular dynamics. The predicted energies of formation of [Agn⊂1]n-3+ (n = 1-5) cryptands provide low energy barriers of formation of 5-20 kcal/mol for all cases, which is consistent with the experimental data. Furthermore, we also examined the structural variability of mixed-valence silver clusters to test whether additional geometrical conformations inside the organic cage are thermodynamically accessible. In this context, we show that the time-dependent density functional theory UV-vis spectra may potentially serve as a diagnostic probe to characterize mixed-valence and geometrical configurations of silver clusters encapsulated into cryptands.

13.
J Phys Chem Lett ; 15(17): 4568-4574, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38639377

ABSTRACT

Pauling and Corey expected that a racemic mixture would result in a rippled ß-sheet, however, it has been known from experiments that the racemic mixtures of triphenylalanine lead to a herringbone structure. Because of the theoretical limitations concerning crystal structures such as rippled ß-sheet, it is inevitable to understand how the interplay of the amino acids prefers a specific structural motif. In this paper we use molecular dynamics to understand the sequence- and enantiomer-dependent structures by comparisons between rippled ß-sheet and pleated ß-sheet, solvated and anhydrous rippled ß-sheet, and rippled ß-sheet and the herringbone structure, based on thermodynamics and structures at the atomic level. The tripeptides select the favored structure that can be stabilized through aromatic or hydrogen bonding interactions between tripeptides. Furthermore, the solubility is determined by the environment of space that is created around the side chains. Our findings provide comprehensive insight into the crystallized fibril motif of the polypeptide.

14.
Nat Commun ; 15(1): 3085, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600128

ABSTRACT

Constructing an artificial solid electrolyte interphase (SEI) on lithium metal electrodes is a promising approach to address the rampant growth of dangerous lithium morphologies (dendritic and dead Li0) and low Coulombic efficiency that plague development of lithium metal batteries, but how Li+ transport behavior in the SEI is coupled with mechanical properties remains unknown. We demonstrate here a facile and scalable solution-processed approach to form a Li3N-rich SEI with a phase-pure crystalline structure that minimizes the diffusion energy barrier of Li+ across the SEI. Compared with a polycrystalline Li3N SEI obtained from conventional practice, the phase-pure/single crystalline Li3N-rich SEI constitutes an interphase of high mechanical strength and low Li+ diffusion barrier. We elucidate the correlation among Li+ transference number, diffusion behavior, concentration gradient, and the stability of the lithium metal electrode by integrating phase field simulations with experiments. We demonstrate improved reversibility and charge/discharge cycling behaviors for both symmetric cells and full lithium-metal batteries constructed with this Li3N-rich SEI. These studies may cast new insight into the design and engineering of an ideal artificial SEI for stable and high-performance lithium metal batteries.

15.
J Am Chem Soc ; 146(12): 8486-8491, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38483834

ABSTRACT

Electrochemical reactions and their catalysis are important for energy and environmental applications, such as carbon neutralization and water purification. However, the synergy in electrocatalysis between CO2 utilization and wastewater treatment has not been explored. In this study, we find that the electrochemical reduction of chlorinated organic compounds such as 1,2-dichloroethane, trichloroethylene, and tetrachloroethylene into ethylene in aqueous media, which is a category of challenging reactions due to the competition of H2 evolution, can be substantially enhanced by simultaneously carrying out the reduction of CO2 on an easily prepared and cost-effective Cu metal catalyst. In the case of 1,2-dichloroethane dechlorination, a 6-fold improvement in Faradaic efficiency and a 19-fold increase in partial current density are demonstrated. Through electrochemical kinetic studies, in situ Raman spectroscopy, and computational simulations, we further find that CO2 reduction reduces hydrogen coverage on the Cu catalyst, which not only exposes more active sites for the dechlorination reaction but also enhances the effective reductive potential on the catalyst surface and reduces the kinetic barrier of the rate-determining step.

16.
ACS Pharmacol Transl Sci ; 7(2): 348-362, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38357278

ABSTRACT

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus mutates, finding effective drugs becomes more challenging. In this study, we use ultrasensitive frequency locked microtoroid optical resonators in combination with in silico screening to search for COVID-19 drugs that can stop the virus from attaching to the human angiotensin-converting enzyme 2 (hACE2) receptor in the lungs. We found 29 promising candidates that could block the binding site and selected four of them that were likely to bind very strongly. We tested three of these candidates using frequency locked optical whispering evanescent resonator (FLOWER), a label-free sensing method based on microtoroid resonators. FLOWER has previously been used for sensing single macromolecules. Here we show, for the first time, that FLOWER can provide accurate binding affinities and sense the inhibition effect of small molecule drug candidates without labels, which can be prohibitive in drug discovery. One of the candidates, methotrexate, showed binding to the spike protein 1.8 million times greater than that to the receptor binding domain (RBD) binding to hACE2, making it difficult for the virus to enter cells. We tested methotrexate against different variants of the SARS-CoV-2 virus and found that it is effective against all four of the tested variants. People taking methotrexate for other conditions have also shown protection against the original SARS-CoV-2 virus. Normally, it is assumed that methotrexate inhibits the replication and release of the virus. However, our findings suggest that it may also block the virus from entering cells. These studies additionally demonstrate the possibility of extracting candidate ligands from large databases, followed by direct receptor-ligand binding experiments on the best candidates using microtoroid resonators, thus creating a workflow that enables the rapid discovery of new drug candidates for a variety of applications.

17.
J Phys Chem Lett ; 15(7): 1899-1907, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38345503

ABSTRACT

We investigated 2D transition metal borides (MBenes) for the efficient conversion of nitrate to ammonia. MBenes have been previously shown to bind oxygen with extraordinary strength, which should translate toward selective adsorption of nitrate in aqueous media. Using Density Functional Theory, we screened MBenes by computing their nitrate and water adsorption energies, seeking materials with strong nitrate binding and weak water binding. We identified MnB, CrB, and VB as the best materials for selective nitrate adsorption and proceeded by computing their free energies for generating ammonia. Of the three candidates, CrB requires the lowest overpotential, making it the best candidate. To further decrease the overpotential, we doped the CrB MBene with secondary transition metals and found the addition of Mn to the active site further reduced the overpotential. We then computed the reaction mechanism grand canonically to observe the effect of applied potential on the free energy landscape.

18.
Angew Chem Int Ed Engl ; 63(12): e202320268, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38271278

ABSTRACT

Efficiently transforming CO2 into renewable energy sources is crucial for decarbonization efforts. Formic acid (HCOOH) holds great promise as a hydrogen storage compound due to its high hydrogen density, non-toxicity, and stability under ambient conditions. However, the electrochemical reduction of CO2 (CO2 RR) on conventional carbon black-supported metal catalysts faces challenges such as low stability through dissolution and agglomeration, as well as suffering from high overpotentials and the necessity to overcome the competitive hydrogen evolution reaction (HER). In this study, we modify the physical/chemical properties of metal surfaces by depositing metal monolayers on graphene (M/G) to create highly active and stable electrocatalysts. Strong covalent bonding between graphene and metal is induced by the hybridization of sp and d orbitals, especially the sharp d z 2 ${{d}_{{z}^{2}}}$ , d y z ${{d}_{yz}}$ , and d x z ${{d}_{xz}}$ orbitals of metals near the Fermi level, playing a decisive role. Moreover, charge polarization on graphene in M/G enables the deposition of another thin metallic film, forming metal/graphene/metal (M/G/M) structures. Finally, evaluating overpotentials required for CO2 reduction to HCOOH, CO, and HER, we find that Pd/G, Pt/G/Ag, and Pt/G/Au exhibit excellent activity and selectivity toward HCOOH production. Our novel 2D hybrid catalyst design methodology may offer insights into enhanced electrochemical reactions through the electronic mixing of metal and other p-block elements.

19.
J Am Chem Soc ; 146(8): 5162-5172, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38226894

ABSTRACT

Dipoles are ubiquitous, and their impacts on materials and interfaces affect many aspects of daily life. Despite their importance, dipoles remain underutilized, often because of insufficient knowledge about the structures producing them. As electrostatic analogues of magnets, electrets possess ordered electric dipoles. Here, we characterize the structural dynamics of bioinspired electret oligomers based on anthranilamide motifs. We report dynamics simulations, employing a force field that allows dynamic polarization, in a variety of solvents. The results show a linear increase in macrodipoles with oligomer length that strongly depends on solvent polarity and hydrogen-bonding (HB) propensity, as well as on the anthranilamide side chains. An increase in solvent polarity increases the dipole moments of the electret structures while decreasing the dipole effects on the moieties outside the solvation cavities. The former is due to enhancement of the Onsager reaction field and the latter to screening of the dipole-generated fields. Solvent dynamics hugely contributes to the fluctuations and magnitude of the electret dipoles. HB with the solvent weakens electret macrodipoles without breaking the intramolecular HB that maintains their extended conformation. This study provides design principles for developing a new class of organic materials with controllable electronic properties. An animated version of the TOC graphic showing a sequence of the MD trajectories of short and long molecular electrets in three solvents with different polarities is available in the HTML version of this paper.

SELECTION OF CITATIONS
SEARCH DETAIL