Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ind Eng Chem Res ; 62(45): 19084-19094, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38020790

ABSTRACT

For the first time, we demonstrate a photoelectrocatalysis technique for simultaneous surfactant pollutant degradation and green hydrogen generation using mesoporous WO3/BiVO4 photoanode under simulated sunlight irradiation. The materials properties such as morphology, crystallite structure, chemical environment, optical absorbance, and bandgap energy of the WO3/BiVO4 films are examined and discussed. We have tested the anionic type (sodium 2-naphthalenesulfonate (S2NS)) and cationic type surfactants (benzyl alkyl dimethylammonium compounds (BAC-C12)) as model pollutants. A complete removal of S2NS and BAC-C12 surfactants at 60 and 90 min, respectively, by applying 1.75 V applied potential vs RHE to the circuit, under 1 sun was achieved. An interesting competitive phenomenon for photohole utilization was observed between surfactants and adsorbed water. This led to the formation of H2O2 from water alongside surfactant degradation (anode) and hydrogen evolution (cathode). No byproducts were observed after the direct photohole mediated degradation of surfactants, implying its advantage over other AOPs and biological processes. In the cathode compartment, 82.51 µmol/cm2 and 71.81 µmol/cm2 of hydrogen gas were generated during the BAC-C12 and S2NS surfactant degradation process, respectively, at 1.75 V RHE applied potential.

2.
Chemosphere ; 308(Pt 2): 136313, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36067814

ABSTRACT

Environmental pollution has strong links to adverse human health outcomes with risks of pollution through production, use, ineffective wastewater (WW) remediation, and/or leachate from landfill. 'Fit-for-purpose' monitoring approaches are critical for better pollution control and mitigation of harm, with current sample preparation methods for complex environmental matrices typically time-consuming and labour intensive, unsuitable for high-throughput screening. This study has shown that a modified 'Quick Easy Cheap Effective Rugged and Safe' (QuEChERS) sample preparation is a viable alternative for selected environmental matrices required for pollution monitoring (e.g. WW effluent, treated sludge cake and homogenised biota tissue). As a manual approach, reduced extraction times (hours to ∼20 min/sample) with largely reproducible (albeit lower) recoveries of a range of pharmaceuticals and biocidal surfactants have been reported. Its application has shown clear differentiation of matrices via chemometrics, and the measurement of pollutants of interest to the UK WW industry at concentrations significantly above suggested instrument detection limits (IDL) for sludge, indicating insufficient removal and/or bioaccumulation during WW treatment. Furthermore, new pollutant candidates of emerging concern were identified - these included detergents, polymers and pharmaceuticals, with quaternary ammonium compound (QAC) biocides observed at 2.3-70.4 mg/kg, and above levels associated with priority substances for environmental quality regulation (EQSD). Finally, the QuEChERS protocol was adapted to function as a fully automated workflow, further reducing the resource to complete both the preparation and analysis to <40 min. This operated with improved recovery for soil and biota (>62%), and when applied to a largely un-investigated clay matrix, acceptable recovery (88.0-131.1%) and precision (≤10.3% RSD) for the tested pharmaceuticals and biocides was maintained. Therefore, this preliminary study has shown the successful application of a high-throughput QuEChERS protocol across a range of environmental solids for potential deployment in a regulated laboratory.


Subject(s)
Disinfectants , Environmental Pollutants , Clay , Detergents , Disinfectants/analysis , Environmental Pollutants/analysis , Humans , Pharmaceutical Preparations , Polymers/analysis , Quaternary Ammonium Compounds/analysis , Sewage , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Wastewater/analysis
3.
Anal Methods ; 12(35): 4387-4393, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32940267

ABSTRACT

Quaternary ammonium compounds (QACs) are broad-spectrum disinfectants used in a range of everyday materials. Their high usage rates, limited regulation and reporting has meant their environmental release is largely uncontrolled and impact unknown. With links to antimicrobial resistance (AMR) and adsorption to wastewater solids (that are recycled), there is a need for more controlled disposal measures and monitoring. These environmental matrices are highly complex requiring methods that are often laborious and costly to undertake. Using a robust quantitative reversed-phase LC-MS/MS method, we have shown that an 'off the shelf' QuEChERS product can reliably extract (<10% RSD) aromatic and aliphatic QACs anticipated within municipal, industrial and agricultural waste from water and soil, with reduced matrix effects of 95.7-104.4% for recoveries of up to 53% from soil when combined with extract dilution. Therefore, unlike current literature, this work has shown that, with minimal development, the QuEChERS product can provide a rapid, effective and low cost preparation for quantifying QAC pollution and monitoring AMR.


Subject(s)
Ammonium Compounds , Disinfectants , Anti-Bacterial Agents/pharmacology , Chromatography, Liquid , Disinfectants/pharmacology , Drug Resistance, Bacterial , Soil , Tandem Mass Spectrometry
5.
Anal Bioanal Chem ; 409(11): 2791-2800, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28161751

ABSTRACT

Understanding and determining levels of lysophospholipids (LPLs) is of increasing interest to the bioanalytical community as they may be targeted for preparative removal as a matrix interference or as a lead substance as a biomarker of disease. Studies monitoring levels of LPLs have used a range of approaches for quantitation whereby those using an internal standard have used either deuterated analogues of the target LPL or alternative LPLs containing an odd number of carbon atoms within its chain, which can be expensive and difficult to distinguish with other LPLs, respectively. A structural analogue, miltefosine, was investigated as a novel internal standard to quantify a selection of lysophosphatidylcholines (LPCs) of clinical interest. A reverse phase C18 LC-MS/MS method was characterised for 16:0-LPC, 18:1-LPC and 18:0-LPC, showing good sensitivity and linearity for all compounds, with limit of detection (LOD) values <1 µg/mL and R 2 ≥ 0.97. Quality control (QC) samples were studied to determine accuracy and precision of the method, with values <15% variation for each compound at multiple concentrations. As an example application, we have used this method to detect the amount of LPC breakthrough following solid phase extraction (SPE) of plasma to quantify LPCs as a target species and to remove them as matrix interferences under various conditions typical to clinical work. This study showed that changes in sample pH could adversely affect the capture of the LPCs and their contribution as matrix interferences, with 3.6 µg/mL of 18:1-LPC observed following plasma extraction. Graphical Abstract A novel internal standard approach to lysophospholipid quantitation in extracted plasma using miltefosine, with analysis by LC-MS/MS.


Subject(s)
Blood Chemical Analysis/standards , Chromatography, Liquid/standards , Lysophospholipids/blood , Lysophospholipids/standards , Mass Spectrometry/standards , Phosphorylcholine/analogs & derivatives , Algorithms , Humans , Internationality , Phosphorylcholine/blood , Phosphorylcholine/standards , Reference Standards , Reproducibility of Results , Sensitivity and Specificity
6.
Anal Chem ; 86(7): 3323-9, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24597530

ABSTRACT

Analysis of the chemical composition of surfaces by liquid sampling devices interfaced to mass spectrometry is attractive as the sample stream can be continuously monitored at good sensitivity and selectivity. A sampling probe has been constructed that takes discrete liquid samples (typically <100 nL) of a surface. It incorporates an electrostatic lens system, comprising three electrodes, to which static and pulsed voltages are applied to form a conical "liquid tip", employed to dissolve analytes at a surface. A prototype system demonstrates spatial resolution of 0.093 mm(2). Time of contact between the liquid tip and the surface is controlled to standardize extraction. Calibration graphs of different analyte concentrations on a stainless surface have been measured, together with the probe's reproducibility, carryover, and recovery. A leucine enkephalin-coated surface demonstrated good linearity (R(2) = 0.9936), with a recovery of 90% and a limit of detection of 38 fmol per single spot sampled. The probe is compact and can be fitted into automated sample analysis equipment having potential for rapid analysis of surfaces at a good spatial resolution.


Subject(s)
Mass Spectrometry/methods , Calibration , Liquid-Liquid Extraction , Molecular Probes , Reproducibility of Results , Surface Properties
7.
Anal Bioanal Chem ; 404(4): 1159-64, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22699234

ABSTRACT

Accurate mass instrumentation is becoming increasingly available to non-expert users. This data can be mis-used, particularly for analyte identification. Current best practice in assigning potential elemental formula for reliable analyte identification has been described with modern informatic approaches to analyte elucidation, including chemometric characterisation, data processing and searching using facilities such as the Chemical Abstracts Service (CAS) Registry and Chemspider.


Subject(s)
Mass Spectrometry/methods , Organic Chemicals/chemistry , Mass Spectrometry/instrumentation , Molecular Weight
8.
J Am Soc Mass Spectrom ; 21(11): 1821-35, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20650651

ABSTRACT

High-resolution mass spectrometry has become ever more accessible with improvements in instrumentation, such as modern FT-ICR and Orbitrap mass spectrometers. This has resulted in an increase in the number of articles submitted for publication quoting accurate mass data. There is a plethora of terms related to accurate mass analysis that are in current usage, many employed incorrectly or inconsistently. This article is based on a set of notes prepared by the authors for research students and staff in our laboratories as a guide to the correct terminology and basic statistical procedures to apply in relation to mass measurement, particularly for accurate mass measurement. It elaborates on the editorial by Gross in 1994 regarding the use of accurate masses for structure confirmation. We have presented and defined the main terms in use with reference to the International Union of Pure and Applied Chemistry (IUPAC) recommendations for nomenclature and symbolism for mass spectrometry. The correct use of statistics and treatment of data is illustrated as a guide to new and existing mass spectrometry users with a series of examples as well as statistical methods to compare different experimental methods and datasets.


Subject(s)
Data Interpretation, Statistical , Mass Spectrometry , Terminology as Topic , Chemical Phenomena , Database Management Systems , Databases, Factual , Ions/chemistry , Vocabulary, Controlled
SELECTION OF CITATIONS
SEARCH DETAIL
...