Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Endocrinol Diabetes Obes ; 27(5): 283-290, 2020 10.
Article in English | MEDLINE | ID: mdl-32773572

ABSTRACT

PURPOSE OF REVIEW: To explore the potential of a low carbohydrate ketogenic diet (LCKD) to counter physical activity intolerance, pain and muscle damage for glycogen storage disease (GSD) V and VII, and highlight the realistic possibility that nutrition could be key. RECENT FINDINGS: Carbohydrate (CHO) ingestion during physical activity in GSDV and a LCKD for GSDVII is common. For the latter, a long-term study demonstrated improvement in physiological markers while on a LCKD. This included improvement in aerobic power and activity tolerance. In GSDV, preliminary research on a LCKD suggest a diet of 75% fat, 15% protein, 10% CHO, is best for improved function and compliance. Ketones provide immediate fuel for acute physical activity, and have an epigenetic role, improving ketone and lipid use. Evidence from elite athletes found a LCKD can increase fat oxidation and is optimal at 70% VO2max. This suggests the need to also improve conditioning via exercise to maximize the benefit of a LCKD. SUMMARY: A high CHO diet in GSDV and VII comes with a restricted physical activity capacity alongside significant pain, muscle damage and risk of renal failure. Mounting evidence suggests a LCKD is efficacious for both disorders providing an immediate fuel source which may negate the need for a 'warm-up' prior to every activity and restore 'normal' function.


Subject(s)
Diet, Ketogenic , Glycogen Storage Disease Type VII/diet therapy , Glycogen Storage Disease Type V/diet therapy , Diet, Carbohydrate-Restricted , Exercise Tolerance/physiology , Glycogen Storage Disease Type V/complications , Glycogen Storage Disease Type V/metabolism , Glycogen Storage Disease Type VII/complications , Glycogen Storage Disease Type VII/metabolism , Humans , Lung Volume Measurements , Muscle, Skeletal/metabolism , Oxidation-Reduction
2.
Int J Sports Physiol Perform ; 12(3): 351-356, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27295720

ABSTRACT

PURPOSE: The aim of the study was to determine the effect of supramaximal exercise intensity during constant work-rate cycling to exhaustion on the accumulated oxygen deficit (AOD) and to determine the test-retest reliability of AOD. METHODS: Twenty-one trained male cyclists and triathletes (mean ± SD for age and maximal oxygen uptake [V̇O2max] were 41 ± 7 y and 4.53 ± 0.54 L/min, respectively) performed initial tests to determine the linear relationship between V̇O2 and power output, and V̇O2max. In subsequent trials, AOD was determined from exhaustive square-wave cycling trials at 105%, 112.5% (in duplicate), 120%, and 127.5% V̇O2max. RESULTS: Exercise intensity had an effect (P = .011) on the AOD (3.84 ± 1.11, 4.23 ± 0.96, 4.09 ± 0.87, and 3.93 ± 0.89 L at 105%, 112.5%, 120%, and 127.5% V̇O2max, respectively). Specifically, AOD at 112.5% V̇O2max was greater than at 105% V̇O2max (P = .033) and at 127.5% V̇O2max (P = .022), but there were no differences between the AOD at 112.5% and 120% V̇O2max. In 76% of the participants, the maximal AOD occurred at 112.5% or 120% V̇O2max. The reliability statistics of the AOD at 112.5% V̇O2max, determined as intraclass correlation coefficient and coefficient of variation, were .927 and 8.72%, respectively. CONCLUSIONS: The AOD, determined from square-wave cycling bouts to exhaustion, peaks at intensities of 112.5-120% V̇O2max. Moreover, the AOD at 112.5% V̇O2max exhibits an 8.72% test-retest reliability.


Subject(s)
Bicycling/physiology , Oxygen Consumption , Physical Endurance/physiology , Adult , Exercise Test , Humans , Male , Reproducibility of Results
3.
J Sports Sci ; 33(13): 1396-402, 2015.
Article in English | MEDLINE | ID: mdl-25573319

ABSTRACT

Few studies have characterised the immune response to exercise of different intensities and durations in women. In those that have, baseline hormone levels and training status were not always adequately controlled for. Here, leucocyte and cytokine profiles of 11 aerobically trained, eumenorrhoeic females (33 ± 5 years) in the early follicular phase of the menstrual cycle were characterised after 30-min exercise at 3 intensities: 90% lactate threshold (LT), LT, and 110% LT. Proposed cytokine response mediators were quantified: plasma lactate and basal oestradiol concentrations. Intensity-dependent increases occurred in total white blood cells and lymphocyte counts (P < 0.001). Elevated plasma IL-6 and IL-1ra concentrations post-exercise [F = 12.38, P < 0.01 and F = 7.65, P < 0.05, respectively] were not intensity-dependent, indicating that cytokine release may be better associated with exercise duration than intensity in trained women. Changes in plasma IL-1ra and basal oestradiol (ρ = -0.893, P < 0.01) were correlated at intensities above LT only. These findings suggest a role for plasma sex hormones in moderating the exercise-induced immune response in women. However, the associations observed did not account for the magnitude of the cytokine response observed, and future studies should explore contributions of other potential mediators following short-duration exercise.


Subject(s)
Exercise/physiology , Follicular Phase/physiology , Interleukin 1 Receptor Antagonist Protein/blood , Interleukin-10/blood , Interleukin-6/blood , Adult , Estradiol/blood , Female , Humans , Lactic Acid/blood , Lymphocyte Count , Oxygen Consumption
4.
Sports Med Open ; 2: 30, 2015 Jun.
Article in English | MEDLINE | ID: mdl-27547716

ABSTRACT

BACKGROUND: Growth hormone (GH) has many direct and indirect actions and roles including substrate regulation and priming of some cells of the immune system, and the expected aspects of growth and repair. Different concentrations in human body fluids reflect the exercise-induced growth hormone response (EIGR) after exercise. In populations such as elite athletes, the invasive nature of venous sampling is poorly accepted. Thus, this study examines possible viable alternatives such as urine and saliva samples and the GH concentration. METHODS: A heterogeneous group of 11 males (age 26.0 ± 5.0 years; body mass 76.5 ± 9.3 kg; VO2peak 57.0 ± 6.0 mL kg-1 min-1) ran for 40 min on a treadmill at 5 % below their individually indentified lactate threshold pace. Samples of urine, saliva and blood were collected immediately pre- and post-test and at 30 and 60 min post-test. RESULTS: Salivary GH was correlated with serum pre- and post-exercise (p < 0.001); urinary GH was correlated with serum (p < 0.05). However, despite being significantly correlated, it is clear from the large differences in absolute concentration in the three media that the appearance of serum GH due to exercise is different from that of the appearance of salivary and urinary GH. This aspect of compartmental exchanges is very difficult to define and to investigate. Differences in any analyte concentration in different compartments are to be expected between different media, and hence the same medium should be used where the same 'pattern of response' can be tracked. CONCLUSIONS: The results suggest that urinary and saliva sampling cannot substitute for venous sampling with respect to exercise-induced changes in GH concentration. The use of the analyses in these three areas may be appropriate for further investigation.

6.
Sports Med ; 33(8): 599-613, 2003.
Article in English | MEDLINE | ID: mdl-12797841

ABSTRACT

Human growth hormone (hGH) is secreted in a pulsatile fashion, generally following a circadian rhythm. A number of physiological stimuli can initiate hGH secretion, the most powerful, non-pharmacological of which are sleep and exercise. hGH has many varied roles throughout life, from growth itself, including the turnover of muscle, bone and collagen, to the regulation of selective aspects of metabolic function including increased fat metabolism and the maintenance of a healthier body composition in later life. The exercise-induced growth hormone response (EIGR) is well recognised and although the exact mechanisms remain elusive, a number of candidates have been implicated. These include neural input, direct stimulation by catecholamines, lactate and or nitric oxide, and changes in acid-base balance. Of these, the best candidates appear to be afferent stimulation, nitric oxide and lactate. Resistance training results in a significant EIGR. Evidence suggests that load and frequency are determining factors in the regulation of hGH secretion. Despite the significant EIGR induced by resistance training, much of the stimulus for protein synthesis has been attributed to insulin-like growth factor-1 with modest contributions from the hGH-GH receptor interaction on the cell membrane. The EIGR to endurance exercise is associated with the intensity, duration, frequency and mode of endurance exercise. A number of studies have suggested an intensity 'threshold' exists for EIGR. An exercise intensity above lactate threshold and for a minimum of 10 minutes appears to elicit the greatest stimulus to the secretion of hGH. Exercise training above the lactate threshold may amplify the pulsatile release of hGH at rest, increasing 24-hour hGH secretion. The impact of chronic exercise training on the EIGR remains equivocal. Recent evidence suggests that endurance training results in decreased resting hGH and a blunted EIGR, which may be linked to an increased tissue sensitivity to hGH. While the potential ergogenic effects of exogenous GH administration are attractive to some athletes, the abuse of GH has been associated with a number of pathologies. Identification of a training programme that will optimise the EIGR may present a viable alternative. Ageing is often associated with a progressive decrease in the volume and, especially, the intensity of exercise. A growing body of evidence suggests that higher intensity exercise is effective in eliciting beneficial health, well-being and training outcomes. In a great many cases, the impact of some of the deleterious effects of ageing could be reduced if exercise focused on promoting the EIGR. This review examines the current knowledge and proposed mechanisms for the EIGR, the physiological consequences of endurance, strength and power training on the EIGR and its potential effects in elderly populations, including the aged athlete.


Subject(s)
Exercise/physiology , Human Growth Hormone/physiology , Aging/physiology , Human Growth Hormone/metabolism , Humans
7.
Toxicol Appl Pharmacol ; 182(2): 148-59, 2002 Jul 15.
Article in English | MEDLINE | ID: mdl-12140178

ABSTRACT

Perchlorate, an environmental contaminant, is known to disturb the hypothalamus-pituitary-thyroid (HPT) axis by blocking iodide accumulation in the thyroid. Iodide deficiency can lead to hypothyroidism and goiter in rats. The objective of the study was to characterize the pharmacokinetics of perchlorate in male Sprague-Dawley rats relative to inhibition of thyroidal radiolabeled iodide uptake and onset of up-regulation of the HPT axis. Radiolabeled perchlorate (3.3 mg/kg (36)ClO(-)(4)) was excreted in urine (99.5% over a 48-h period). (36)ClO(-)(4) is rapidly distributed into tissues with preferential sequestration into skin, gastrointestinal tract (GT), and thyroid. Calculated half-lives of (36)ClO(-)(4) from the skin, thyroid, plasma, GT, and GT contents were 32.0, 7.6, 7.3, 10.0, and 8.6 h, respectively. Perchlorate was very effective at inhibiting thyroidal uptake of radiolabeled iodide ((125)I(-)). In animals iv dosed with perchlorate followed by an iv challenge of (125)I(-), thyroidal (125)I(-) uptake was diminished by 11, 29, 55, and 82% at 11 h postdosing in the 0.01, 0.1, 1.0, and 3.0 mg/kg perchlorate dose groups, respectively. In perchlorate drinking water studies, dose-dependent inhibition in thyroidal uptake of (125)I(-) initially occurred with corresponding increases in serum thyroid-stimulating hormone (TSH) levels and decreases in thyroid hormone levels. TSH stimulated recovery from the initial perchlorate blocking effects was evident during 14 days of treatment in the 1.0 and 3.0 mg/kg per day treatment groups. However, recovery of serum thyroid hormones at these doses was much slower despite evidence for iodide sufficiency in the thyroid. These results suggest that the typical homeostatic mechanisms of the thyroid may respond differently at high doses of perchlorate used in this rat study (above 1 mg/kg per day) or perchlorate may be acting on the HPT axis by mechanisms other than thyroidal (125)I(-) uptake inhibition.


Subject(s)
Hexachlorocyclohexane/pharmacology , Insecticides/pharmacology , Phospholipases/physiology , Uterine Contraction/drug effects , Animals , Cell Separation , Female , Fluorescent Dyes , Gap Junctions/drug effects , Isoquinolines , Male , Myometrium/drug effects , Phospholipases/antagonists & inhibitors , Pregnancy , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...