Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38370818

ABSTRACT

Protein kinase C (PKC) plays a key role in modulating the activities of the innate immune cells of the central nervous system (CNS). A delicate balance between pro-inflammatory and regenerative activities by microglia and CNS-associated macrophages is necessary for the proper functioning of the CNS. Thus, a maladaptive activation of these CNS innate immune cells results in neurodegeneration and demyelination associated with various neurologic disorders, such as multiple sclerosis (MS) and Alzheimer's disease. Prior studies have demonstrated that modulation of PKC activity by bryostatin-1 (bryo-1) and its analogs (bryologs) attenuates the pro-inflammatory processes by microglia/CNS macrophages and alleviates the neurologic symptoms in experimental autoimmune encephalomyelitis (EAE), an MS animal model. Here, we demonstrate that (2S,5S)-(E,E)-8-(5-(4(trifluoromethyl)phenyl)-2,4-pentadienoylamino)benzolactam (TPPB), a structurally distinct PKC modulator, has a similar effect to bryo-1 on CNS innate immune cells both in vitro and in vivo, attenuating neuroinflammation and resulting in CNS regeneration and repair. This study identifies a new structural class of PKC modulators, which can therapeutically target CNS innate immunity as a strategy to treat neuroinflammatory and neurodegenerative disorders.

2.
bioRxiv ; 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37693473

ABSTRACT

In multiple sclerosis (MS), microglia and macrophages within the central nervous system (CNS) play an important role in determining the balance between myelin repair and demyelination/neurodegeneration. Phagocytic and regenerative functions of these CNS innate immune cells support remyelination, whereas chronic and maladaptive inflammatory activation promotes lesion expansion and disability, particularly in the progressive forms of MS. No currently approved drugs convincingly target microglia and macrophages within the CNS, contributing to the critical lack of therapies promoting remyelination and slowing progression in MS. Here, we found that the protein kinase C (PKC)-modulating drug bryostatin-1 (bryo-1), a CNS-penetrant compound with an established human safety profile, produces a shift in microglia and CNS macrophage transcriptional programs from pro-inflammatory to regenerative phenotypes, both in vitro and in vivo. Treatment of microglia with bryo-1 prevented the activation of neurotoxic astrocytes while stimulating scavenger pathways, phagocytosis, and secretion of factors that promote oligodendrocyte differentiation. In line with these findings, systemic treatment with bryo-1 augmented remyelination following a focal demyelinating injury in vivo. Our results demonstrate the potential of bryo-1 and functionally related PKC modulators as myelin regenerative and neuroprotective agents in MS and other neurologic diseases through therapeutic targeting of microglia and CNS-associated macrophages.

3.
Front Neurol ; 13: 979659, 2022.
Article in English | MEDLINE | ID: mdl-36761918

ABSTRACT

Multiple sclerosis (MS) is a neuroinflammatory disease of the central nervous system (CNS). Although classically considered a demyelinating disease, neuroaxonal injury occurs in both the acute and chronic phases and represents a pathologic substrate of disability not targeted by current therapies. Nitric oxide (NO) generated by CNS macrophages and microglia contributes to neuroaxonal injury in all phases of MS, but candidate therapies that prevent NO-mediated injury have not been identified. Here, we demonstrate that the multifunctional protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is robustly nitrosylated in the CNS in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. GAPDH nitrosylation is blocked in vivo with daily administration of CGP3466b, a CNS-penetrant compound with an established safety profile in humans. Consistent with the known role of nitrosylated GAPDH (SNO-GAPDH) in neuronal cell death, blockade of SNO-GAPDH with CGP3466b attenuates neurologic disability and reduces axonal injury in EAE independent of effects on the immune system. Our findings suggest that SNO-GAPDH contributes to neuroaxonal injury during neuroinflammation and identify CGP3466b as a candidate neuroprotective therapy in MS.

4.
Metabolites ; 10(11)2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114536

ABSTRACT

Immune cells undergo dramatic metabolic reprogramming in response to external stimuli. These metabolic pathways, long considered as simple housekeeping functions, are increasingly understood to critically regulate the immune response, determining the activation, differentiation, and downstream effector functions of both lymphoid and myeloid cells. Within the complex metabolic networks associated with immune activation, several enzymes play key roles in regulating inflammation and represent potential therapeutic targets in human disease. In some cases, these enzymes control flux through pathways required to meet specific energetic or metabolic demands of the immune response. In other cases, key enzymes control the concentrations of immunoactive metabolites with direct roles in signaling. Finally, and perhaps most interestingly, several metabolic enzymes have evolved moonlighting functions, with roles in the immune response that are entirely independent of their conventional enzyme activities. Here, we review key metabolic enzymes that critically regulate inflammation, highlighting mechanistic insights and opportunities for clinical intervention.

5.
Blood ; 136(16): 1837-1850, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32845007

ABSTRACT

Despite harboring mutations in oncogenes and tumor suppressors that promote cancer growth, T-cell acute lymphoblastic leukemia (T-ALL) cells require exogenous cells or signals to survive in culture. We previously reported that myeloid cells, particularly dendritic cells, from the thymic tumor microenvironment support the survival and proliferation of primary mouse T-ALL cells in vitro. Thus, we hypothesized that tumor-associated myeloid cells would support T-ALL in vivo. Consistent with this possibility, in vivo depletion of myeloid cells results in a significant reduction in leukemia burden in multiple organs in 2 distinct mouse models of T-ALL and prolongs survival. The impact of the myeloid compartment on T-ALL growth is not dependent on suppression of antitumor T-cell responses. Instead, myeloid cells provide signals that directly support T-ALL cells. Transcriptional profiling, functional assays, and acute in vivo myeloid-depletion experiments identify activation of IGF1R as a critical component of myeloid-mediated T-ALL growth and survival. We identify several myeloid subsets that have the capacity to directly support survival of T-ALL cells. Consistent with mouse models, myeloid cells derived from human peripheral blood monocytes activate IGF1R and directly support survival of primary patient T-ALL cells in vitro. Furthermore, enriched macrophage gene signatures in published clinical samples correlate with inferior outcomes for pediatric T-ALL patients. Collectively, these data reveal that tumor-associated myeloid cells provide signals critical for T-ALL growth in multiple organs in vivo and implicate tumor-associated myeloid cells and associated signals as potential therapeutic targets.


Subject(s)
Cell Communication , Myeloid Cells/immunology , Myeloid Cells/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/etiology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Tumor Microenvironment , Biomarkers , Cell Line, Tumor , Gene Expression Profiling , Humans , Macrophages/immunology , Macrophages/metabolism , Monocytes/immunology , Monocytes/metabolism , Myeloid Cells/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Signal Transduction
6.
ACS Med Chem Lett ; 5(7): 782-6, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25050165

ABSTRACT

α-Synuclein is a chaperone-like protein implicated in Parkinson's disease (PD). Among α-synuclein's normal functions is an ability to bind to and stimulate the activity of the protein phosphatase 2A (PP2A) catalytic subunit in vitro and in vivo. PP2A activity is impaired in PD and in dementia with Lewy Bodies in brain regions harboring α-synuclein aggregates. Using PP2A as the readout, we measured PP2A activity in response to α-synuclein, ceramides, and FTY720, and then on the basis of those results, we created new FTY720 compounds. We then measured the effects of those compounds in dopaminergic cells. In addition to stimulating PP2A, all three compounds stimulated the expression of brain derived neurotrophic factor and protected MN9D cells against tumor-necrosis-factor-α-associated cell death. FTY720-C2 appears to be more potent while FTY720-Mitoxy targets mitochondria. Importantly, FTY720 is already FDA approved for treating multiple sclerosis and is used clinically worldwide. Our findings suggest that FTY720 and our new FTY720-based compounds have considerable potential for treating synucleinopathies such as PD.

SELECTION OF CITATIONS
SEARCH DETAIL
...