Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 9(10): 5938-5949, 2019 May.
Article in English | MEDLINE | ID: mdl-31161010

ABSTRACT

Species distribution modeling often involves high-dimensional environmental data. Large amounts of data and multicollinearity among covariates impose challenges to statistical models in variable selection for reliable inferences of the effects of environmental factors on the spatial distribution of species. Few studies have evaluated and compared the performance of multiple machine learning (ML) models in handling multicollinearity. Here, we assessed the effectiveness of removal of correlated covariates and regularization to cope with multicollinearity in ML models for habitat suitability. Three machine learning algorithms maximum entropy (MaxEnt), random forests (RFs), and support vector machines (SVMs) were applied to the original data (OD) of 27 landscape variables, reduced data (RD) with 14 highly correlated covariates being removed, and 15 principal components (PC) of the OD accounting for 90% of the original variability. The performance of the three ML models was measured with the area under the curve and continuous Boyce index. We collected 663 nonduplicated presence locations of Eastern wild turkeys (Meleagris gallopavo silvestris) across the state of Mississippi, United States. Of the total locations, 453 locations separated by a distance of ≥2 km were used to train the three ML algorithms on the OD, RD, and PC data, respectively. The remaining 210 locations were used to validate the trained ML models to measure ML performance. Three ML models had excellent performance on the RD and PC data. MaxEnt and SVMs had good performance on the OD data, indicating the adequacy of regularization of the default setting for multicollinearity. Weak learning of RFs through bagging appeared to alleviate multicollinearity and resulted in excellent performance on the OD data. Regularization of ML algorithms may help exploratory studies of the effects of environmental factors on the spatial distribution and habitat suitability of wildlife.

2.
Int J Biometeorol ; 63(8): 1059-1067, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31025106

ABSTRACT

Weather has been recognized as a density independent factor influencing the abundance, distribution, and behavior of vertebrates. Male wild turkeys' (Meleagris gallopavo) breeding behavior includes vocalizations and courtship displays to attract females, the phenology of which can vary with latitude. State biologists design spring turkey-hunting season frameworks centered on annual vocalization patterns to maximize hunter engagement. The Mississippi Department of Wildlife, Fisheries, and Parks has traditionally instituted a statewide, 7-week, spring harvest season. However, hunters routinely argue that different peaks in gobbling activity across the state exist. The objective of this study was to determine whether differences in peak gobbling activity existed across a latitudinal gradient of Mississippi and assess the effect of weather on gobbling. During 2008 and 2009, we conducted a statewide gobbling survey. We used generalized additive mixed models to describe the probability and frequency of gobbling activity within northern and southern regions of the state. We also investigated the effect of daily weather conditions on gobbling activity. Our results revealed an approximate 10-14-day difference in peak gobbling activity between southern and northern Mississippi. The majority of all gobbling activity occurred within the current spring harvest framework. Perhaps more importantly, gobbling activity was more prevalent on days of regionally dry conditions (i.e., less humid) according to the Spatial Synoptic Classification. Our results provide information on gobbling activity phenology relative to hunting-season dates and weather-response information. Our approach may be particularly applicable in states with relatively shorter seasons or highly variable daily weather conditions that moderate gobbling frequency.


Subject(s)
Turkeys , Weather , Animals , Animals, Wild , Female , Male , Probability , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...